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Lecture 10

CS4248: Natural Language Processing

Lecture 10 — Transformers & LLMs
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Announcements

Projects
m Grades and comments for Intermediate Update posted

m (Extended for Week 12) Optional consultation session — you can register here

Deadlines

m Standard Project Report Submission Deadline: Thu, Apr 18, 23:59 SGT
m STePS Projects:
m STePS Public Poster Presentation: Wed, Apr 17, 15:00 — 20:00 SGT

(Instructors and Project Mentors will let you know rough timing windows for oral viva)

m Clarification Submission Deadline (if any): Thu, Apr 18, 23:59 SGT


https://docs.google.com/spreadsheets/d/16Zs0837EXvuTSxFqptU5_9YQ3ZP5bVMFJ9leMTYPbFU/edit#gid=0

Recap of Week 09

Context-Free Grammars (CFGs)

e Context-Free Grammars
m Most common way to capture constituency and ordering =» good fit for natural language!

(in fact, context-free grammars were first used to study human languages to describe the structure of sentences)

n Define what meaningful constituents are and how a constituent is formed out of other
constituents

m More powerful than RegExs as they can express recursive structure
(in contrast, context free grammars can describe regular languages)

special start symbol  —> S5 — NP VP Non-terminal symbols
NP — Det Noun = Symbols that can be replaced according to rules
< : = For natural language grammars: phrase names, part of speech
VP — Verb NP

e Example Det — a | the

Noun — man | meal | flight
Verb — saw | booked

Terminal symbols
= May be the output of a rule; cannot be changed/replaced further
= For natural language grammars: words/tokens

set of rules or productions

PCFG — Probability of a Parse Tree

e Probability of parse tree = product of probabilities of all rules
m In practice, sum up log probabilities to avoid arithmetic underflow

NP 0.2

NPO2

Pronoun Verb 0.4 Pronoun
0.4 | e 0. o — i
book  Det 0.4 Verb 0.4 NP 0.6 Prep 0.1 NP 0.2
| i B s | |
the  Nominal 0.3 book  Det Nominal through ProperNoun 0.4
| 0.4 0.
Noun 0.2 Prep 0.1 NP 0.2 the Noun 0.2 ore
flight through ProperNoun 0.4 flight

pore

n n
P(T,8) =[] P(A = @) = 000000071 P(T,S) =[] P(A = @) = 0.00000024

i i

66

Cells for spans of length L > 1
=» Check for each binary split if there is a
production rule that can generate split

CYK — Walkthrough

1 book the flight through Singapore Example: Cell [0,2]
= only 1 binary split: [0,1]/[1,2]
[0,1] [0,2] [0,3] [0,4] [0,5] [0,8]
Pronoun, NP | s i : "
Check each possible pair of non-terminals
13l el it Bl fsl of binary split is the RHS of an existing
s, ve, .
production rule = Yes, add LHS to cell
Nominal,
Noun, Verb
LHS | RHS
12,3) 12,4] 2,5] 12,6]
— | Pronoun §
Det NP
— | Pronoun VP
13,4] 3,5] 13,6]
N — | Pronoun Nominal
N — | Pronoun Noun
— Pronoun Verb
(4,5] [4,8]
—_ WS Only this rul
Prep PP nly this rule exists
[5.6] SER(ENFIVE in our grammar
= NP Nominal
PropNoun
= NP Noun
NP
— | NPVerb

42

Evaluation of Parse Trees — Example

Tuples only present in correct tree Tuples resent in both trees Tuples only present in computed tree

(NP, 3,6) (NP, 1,1) (Pronoun, 1,1) (VP,2,2) (Verb,2,: (VP,2,4)
(Nominal, 4, 6) (Det, 3,3) (Nominal, 4,4) (Noun, 4, 4) (Prep, 5, 5) (NP, 3,4)
(ProperNoun, 6,6) (PP,5,6) (NP,6,6)

TP 11
Precision = =0.85

TP+FP 11+2

TP = # tuples in both trees

FP = # tuples only in the computed tree

FN = # tuples only in the correct tree
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Quick Quiz: Which model is easier to build? Why?

Supervised Training (RNN)

Task A: Learning a Language Model Task B: Learning a QA System

[...] Precipitation forms as smaller droplets
coalesce via collision with other raindrops
or ice crystals within a cloud. Short, intense
periods of rain in scattered locations are
called “showers”.[...]

r

)
)

(0coo000](00000]
(0coo000](00000]
(0coo000](00000]
(0coo000](00000]
(0coo000](00000]
(0coo000](00000]
Jooooo][ooooo

(cooo00](00000

Vs

“some” encoder network

aliy

[...] Precipitation forms as smaller droplets
coalesce via collision with other raindrops
or ice crystals within a cloud. Short, intense
periods of rain in scattered locations are
called “showers”.[...]

within a cloud J

D

)

(0co000](00000)
(0co000](00000)
(0co000](00000)

(cooo00](00000

Vs

)

(0co000](00000)
(coo000](00000)
(coo000](00000)
Jooooo][ooooo

“some” encoder network

P

aliy

Where do water droplets
collide with ice crystals to
form precipitation?

[...] Precipitation forms as smaller droplets
coalesce via collision with other raindrops

or ice crystals within a cloud. Short, intense
periods of rain in scattered locations are
called “showers”.[...]




Transfer Learning for NLP Models

Small(er)
R
N annotated
dataset

Large text

o @
\_/
" . . E
Pretraining Fine-Tuning “E Application
(task-independent) (task-independent) task

Pretrained Fine-tuned
language model model




Transfer Learning with Word2Vec (o ciove)

e Word2Vec: (almost) context-independent
m BoW model = no consideration of word order

m Limited window size =» no consideration of whole sentence

m Combining all the senses of a word into a single vector

“A light wind will make the traffic light collapse and light up in flames.”

00000
00000
00000

Problem: Same word vector for all occurrences of “light”



Goal: Contextualized Word Embeddings

e \What we want
m Word representations should vary depending on context

m Context = whole sentence + word order

“A light wind will make the traffic light collapse and light up in flames.”

00000
00000
00000

~ weak, soft mild ~ glow, brightness ~ ignite, burn, kindle



Lecture 10

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

Outline

e Contextual Word Embeddings

Motivation
ELMo

e Transformers

Positional Encoding
Core Layers
Encoder & Decoder

e Extended Concepts

Masking
Restricted Attention

e Transformer-based LLMs

Overview

Encoder-only: BERT, RoBERTa
Encoder-Decoder: T5, BART
Decoder-only: GPT, LLaMA
Opportunities & Challenges



ELMo — Embeddings from Language Model

e ELMo = RNN-based Language model, but...
m LSTM instead of Vanilla RNN

(better handling of long dependencies)

m Bi-LSTM — Bidirectional LSTM

(forward and backward processing of sequence)

Recall: Vanilla RNN Language Model
m Two Bi-LSTM layers

(output of 1st layer = input of 2nd layer) ! like this movie </s>
£ 1Y V- R 3 N /" ~ ‘/—\
I A A A
. - w2 2o
- ey 4 & Y \ 7
R I A A
<s> / like this movie

Source: Deep Contextualized Word Representations



https://arxiv.org/pdf/1802.05365.pdf

ELMo

Backward
LSTM

Forward
LSTM

2nd Bi-LSTM

Backward
LSTM

Forward
LSTM

1st Bi-LSTM

</s>

!

[ softmax ]

(eJe]elele) (eYe]elele) ([©O000)

(OO000)

LSTM
| LSTM

LSTM [«—
LSTM

LSTM
LSTM

LSTM

A

OOOOO OOOOO OOOOO

ooooo]

LSTM
LSTM

LSTM
LSTM

LSTM [¢——
LSTM

LSTM
LSTM

i

LSTM

OOOOO OOOOO OOOOO

—

T

movie

11



ELMo — Final Embeddings
Yt

softmax

00000] #? =(7®, 7®) —
. LSTM |e}—— ...
emby

WY = B ) o

LSTM [+ -

. — LSTM e

00000) A

uncontextualized
Tt embedding

;.

1

Final embedding = “some” function of hgi)

Simplest case: top layer  emb; = hz(?)

Generalized approach: weighted sum

2 2
emby = 72 sjh§’) , with Z sj=1
7=0 =1

iz

scaling normalized
factor weight

N

task-dependent values

12



ELMo — Evaluation

e Improvement of NLP downstream tasks

INCREASE
TASK PREVIOUS SOTA GUR A (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liuetal. (2017) 84.4 || 81.1 85.8 4.7 /24.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 £ 0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 321 171.2%
Coref Lee etal. (2017) 672 || 612 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 £0.19 || 90.15 9222 +0.10 2.06/21%
SST-5 McCann et al. (2017) o037 || al.4 34.7 <+ 0.5 3.3/6.8%

Source: Deep Contextualized Word Representations

13


https://arxiv.org/pdf/1802.05365.pdf

ELMo — Evaluation

e Qualitative understanding what ELMo learns

Source

Nearest Neighbors

GloVe play

playing, game, games, played, players, plays, player,
Play, football, multiplayer

Chico Ruiz made a spec-
tacular play on Alusik ’s
grounder {...}

Kieffer , the only junior in the group , was commended
for his ability to hit in the clutch , as well as his all-round
excellent play .

biLM e De  Havilland

signed to do a Broadway
play for Garson {... }

{...} they were actors who had been handed fat roles in
a successful play , and had talent enough to fill the roles
competently , with nice understatement .

Source: Deep Contextualized Word Representations

14


https://arxiv.org/pdf/1802.05365.pdf
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Pre-Lecture Activity from Last Week

Pre-Lecture Activity for Next Week

Read 8 Google Employees Invented Modern
Al. Here’s the Inside Story
(Wired Article)

Apply your own (self-)attention to the article.
Quote a sentence of the article you think most
or least strikes your attention. Tell us why.

Side notes:
e This task is meant as a warm-up to provide some context for the next lecture
e No worries if you get lost; we will talk about this in the next lecture
e You can just copy-&-paste others' answers but this won't help you learn better



https://www.wired.com/story/eight-google-employees-invented-modern-ai-transformers-paper/#:~:text=Invented%20Modern%20AI.-,Here%27s%20the%20Inside%20Story,tech%20breakthrough%20in%20recent%20history.&text=Eight%20names%20are%20listed%20as,in%20the%20spring%20of%202017.
https://www.wired.com/story/eight-google-employees-invented-modern-ai-transformers-paper/#:~:text=Invented%20Modern%20AI.-,Here%27s%20the%20Inside%20Story,tech%20breakthrough%20in%20recent%20history.&text=Eight%20names%20are%20listed%20as,in%20the%20spring%20of%202017.
https://www.wired.com/story/eight-google-employees-invented-modern-ai-transformers-paper/#:~:text=Invented%20Modern%20AI.-,Here%27s%20the%20Inside%20Story,tech%20breakthrough%20in%20recent%20history.&text=Eight%20names%20are%20listed%20as,in%20the%20spring%20of%202017.

Pre-Lecture Activity from Last Week




RNN — Problem: (Very) Long Sequences

e Training
m Vanishing & Exploding Gradients problem (not detailed here)

e [nformation capture
m Hidden state /; must capture all information from hg, by, ..., hy_1

m Information dilutes over time =» bottleneck

e Performance
m Processing is intrinsically sequential =<» no parallelization

m GPU-based performance gain depends on parallelization

S

=» Attention

N
=» Transformer

18



Transformer — Architecture

e Encoder—decoder architecture without recurrences

m No long-range dependencies =» no bottleneck

m No sequential processing =» easy to parallelize

(note: this does not mean transformers are easier/faster to train!)

e Core concept: Attention
m Alignment scores between all word pairs

e |Important: Positional Embeddings
m Preserve order of words in sequence

Source: Attention is all You Need

Qutput
Probabilities
’
Add & Norm 3
Feed
Forward
4 ™\ Add & Norm
| Add & Norm | .
( —Add & o Multi-Head
Feed Attention
Forward T 7 Nx
—
Nix Add & Norm
f‘" Add & Norm ' e
Multi-Head Multi-Head
Attention Attention
At VI,

—_— Q —)
Positional D ¢ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs 19


https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
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Positional Encodings

e Recall: RNNs process words sequentially

m Considers order of words

m Considers distance between words

e Transformers
m Process all words all at once

m No in-built mechanism to consider
word order and word distances

Can we somehow encode the position of words?
(as part of preprocessing the input for the transformer)

Qutput

Positional
Encoding e 0’

Probabilities
’
Add & Norm 3
Feed
Forward
4 ™\ Add & Norm
| Add & Norm | .
( —Add & o Multi-Head
Feed Attention
Forward T 7 Nx
A —
Add & Norm
f‘" Add & Norm ' e
Multi-Head Multi-Head
Attention Attention
At VI,
R I
J \ J
@ Positional
Encoding
Input Output
Embedding Embedding
Inputs Outputs

21



In-Lecture Activity (7 mins)

£ % % What's Your Position?




Positional Encodings — Naive Approach 1

e Set position embedding values to actual position

ey Po €1 D1 €2 D2 PN—1€N-1
0.42 0 0.09 1 0.28 2 0.19 N-1
0.06 0 0.20 1 0.31 2 0.38 N-1
073 == | 0 0.94( == | 1 081 == | 2 0.65| == [N-1
0.28 0 0.85 1 0.46 2 0.86 N-1
0.55 0 0.17 1 0.98 2 0.04 N-1

=» Problem: positional encodings quickly start “dominating” word embeddings
e Magnitude of positional embedding values depends on sequence length N



Positional Encodings — Naive Approach 2

e Set position embedding values to

€0

Do

0.42

0

0.06

0.73

0.28

0.55

er D1
0.09 0.2
0.20 0.2
0.94 0.2
0.85 0.2
0.17 0.2

€2 P2
0.28 0.4
0.31 0.4
0.81 0.4
0.46 0.4
0.98 0.4

N—-1

PN—1€N-1
0.19 1
0.38 1
065 4 | 1
0.86 1
0.04 1

Example values for N =6

=» Problem: positional encodings depend on the length of the sequence length

e encoding of the same position will differ for sequences with different lengths



Positional Encodings — Proposed Approach

e Set position embedding values to

1 =0
1 =1
1 =2
1=3

Po

0.0

P15

1.0

0.65

0.0

0.93

1.0

0.01

0.0

1.0

0.0

Pos

P100

-0.51

-0.81

0.06

1.0

0.0

e POS
PE<p0372i> — sl (100002i/dm0del>

B POS
PEQ?OS)QZ;H) — 08 <100002i/dm0del)

Advantages:
e Unique encoding for each position

e All values or of interval [-1, 1]

e Position encoding independent from N

25



Positional Encodings — Visualized

Representing a position/order (l) in binary and (r) in floats (positional encoding)

0: 0000
1: 0001
2> 00 10
3: 0011
4: 0100 )
5: 0101
6: 0110
7= 0113

80 100 120

Depth

128-dimensional positional encoding for a sentence with length=50. Each row represents the
embedding vector.

Source: Transformer Architecture: The Positional Encoding

100

075

050

025

r0.00

F-0.25

-0.75

-1.00

26


https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
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RNN Attention (revisited)

Attention Layer

Ct

0.85 m

Step 1: Calculation of Attention Scores
. h Y
e; = score (ht,hgz)) = { !

Step 2: Calculation of Attention Weights
exp (e;)

)

Step 3: Calculation of Context Vector

Ct = Zai . hg)

|
! % W h
—— — — 1 |
[ ] L 1] [ ] [ ] L]
Encoder RNN Ich ging nach Hause <s> Decoder RNN

28



RNN Attention (revisited)

hidden state of decoder hidden states of encoder

V i \
went ([ e ])X| 08 1 n Ich % a2 %
ging K
softmax e v [ o 1] = (L e 1)
\ 1 Hause |[ 2% | \
) v g context vector

(G1 9o as a4)

/

attention weights

29



Attention — Generalized Definition

c &
s5is
went ([ Ay )X h£]>h£2)h£3)h.£“)) Ich [ a0 ]
ot ] B 3
1 Hause \[ n® |

Scaled Dot-Product Attention

KT e Intuition: queries (), keys K, values
Attention(@Q), K, V') = softmax \/d—kz [ P € K, ¢ € Q are vectors of size d.

e scaling by v/d;. leads to more stable gradients

30


https://ai.stackexchange.com/questions/21237/why-does-this-multiplication-of-q-and-k-have-a-variance-of-d-k-in-scaled

Scaled Dot-Product Attention

QK"

Attention(Q, K, V') = softmax 1% | import torch
A /dk 2 import torch.nn as nn
1 5 class Attention(nn.Module):
) ### Implements Scaled Dot Product Attention
MatMul 7
8 def  init (self):
f A 9 super()._init ()
SOﬂMaX 11 def forward(self, Q, K, V, mask=None, dropout=None):
* 12 # All inputshapes: (batch size B, seq len L, model size D)
1 # Perform Q*K~T (* is the dot product here)
MaSk (Opt) 15 # We have to use torch.matmul since we work with batches!
* out = torch.matmul(Q, K.transpose(l, 2)) # => shape: (B, L, L)
| # scale alignment scores
Scae 19 out = out / (Q.shape[-1] ** 0.5)
f A # Push throught softmax layer
MatMul 22 out = f.softmax(out, dim=-1)
1 1 24 # Multiply scaled alignment scores with values V
25 return torch.matmul(out, V)

O K V

Source: Attention is all You Need 31



https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Attention Head

° Maps mOdel Slz€ dmOdel tO Slz€ Of Scaled Dot-'Product B
qgueries, keys, and values (by default: same size) - Atte:nlt'on

r r

e Proposed: dg = dj. = dy = (dyodel/ ) L]

Vv K Q

. import torch
Number of heads; 2 dimport torch.nn as nn

see next slide

class AttentionHead(nn.Module):

7 def init (self, model size, qgkv_size):

super()._ init ()

self.Wg = nn.Linear(model size, qkv_size)
self.Wk = nn.Linear(model_size, gkv_size)
self.Wv = nn.Linear(model size, gkv size)

self.attention = Attention()

def forward(self, queries, keys, values):

# Computes scaled dot-product attention

Quick Quiz: What do you think is the reason 1€ return self.attention(self.Wq(queries),
17 self.Wk(keys),

for dividing by the number of heads? Lot WUlvaLloesy) 2
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Multi-Head Attention (MHA)

Purpose / Intuition

)
m A word may relate to multiple other words in a sentence Linear
A
m Asingle Attention Head considers only one instance re—
of relationship between pairs of words T
m MHA allows to capture different relationships -
(note that each Attention Head comes with its own weight matrices!) Scaled DO’[-'PI’OdUC’[ h
Attention
m Parameter: number of heads = ) 4l Al Al

L L L
Linear L] Linear L] Linear L]

P

34



Multi-Head Attention

t

Linear

A

Concat

Aw\

Scaled Dot-Product

Attention
Al tl Al
y- = Fom V-~
Linear Linear Linear
V K )

!

Add & Norm

Feed
Forward

Qutput
Probabilities

Add & Norm

Feed
Forward

I

Add & Norm

Multi-Head
Attention

Add & Norm

I

Masked
Multi-Head Multi-Head
Attention Attention
— , VI
\_ \L =,
Positional Positional
Encodi ¥ & i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs 35



Multi-Head Attention

1 import torch

1 Ensures that the outputs import torch.nn as nn

Linear are of size el

5 class MultiHeadAttention(nn.Module):

def init_ (self, num_heads, model size, gkv_size):

Concat super(). init ()
M # Define num heads attention heads
{ self.heads = nn.ModuleList(
— [ AttentionHead(model size, gkv_size) for _ in range(num_heads) ]
Scaled Dot-Product )
Attent|on 5 # Linear layer to "unify" all heads into one
A ﬂ | ﬁ 16 self.Wo = nn.Linear(num_heads * gkv_size, model size)
| - A o
£ ~ £ 1

Linear Linear Linear 19 def forward(self, query, key, value):

20 # Compute the outputs for all attention heads
1 out _heads = [ head(query, key, value) for head in self.heads ]

# Concatenate output of all attention heads
24 out = torch.cat(out heads, dim=-1)

\/ P( (} 26 # Unify concatenated output to the model size
return self.Wo(out)

36



Lecture 10

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

Outline

e Contextual Word Embeddings

Motivation
ELMo

e Transformers

Positional Encoding
Core Layers: Feed-Forward Layer
Encoder & Decoder

e Extended Concepts

Masking
Restricted Attention

e Transformer-based LLMs

Overview

Encoder-only: BERT, RoBERTa
Encoder-Decoder: T5, BART
Decoder-only: GPT, LLaMA
Opportunities & Challenges

37



Feed Forward Layer

e The original paper doesn’t say what its purpose is

e ...uh, increase capacity / complexity

Feed-forward layers constitute two-thirds of a
transformer model’s parameters, yet their role
in the network remains under-explored.

Source: Transformer Feed-Forward Layers Are Key-Value Memories (2021)

Qutput
Probabilities
’
Add & Norm J
Feed
Forward
7 Add & Norm
Multi-Head
Feed Attention
Forward 7 ¥ Nx
————
Nix Add & Norm
f—’l Add & Norm ' TR
Multi-Head Multi-Head
Attention Attention
1t V.

— y, \ =
Positional D ¢ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs 38


https://aclanthology.org/2021.emnlp-main.446.pdf

Feed Forward Layer

import torch
import torch.nn as nn

class FeedForward(nn.Module):

def init (self, model size, hidden size=2048):
super(). init ()

10 # Very simple 2-layer fully connected network
L] self.net = nn.Sequential(
12 nn.Linear(model size, hidden size),
1 nn.RelLU(),
14 nn.Linear(hidden_size, model size),
15 )

def forward(self, X):

return self.net(X)

|
:!I:l Nx | —(TAdd & Norm )

\.

Feed
Forward

Multi-Head
Attention

——

t

Qutput

Probabilities

Add & Norm

!

Feed
Forward

I

Add & Norm

Multi-Head
Attention

P

Add & Norm

Masked
Multi-Head
Attention

L

S
\. =)

Positional
Encoding

D

Input
Embedding

I

Inputs

G_

Output
Embedding

I

Outputs

Positional
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Encoder Layer

e Combines MHA and FF block

(MHA: Multi-Head Attention, FF: Feed Forward)
e 3 additional concepts deployed

Oversimplified!

(1) Residual Connections

e Help mitigate the vanishing gradient problem

(2) Dropout (after MHA/FF block; not shown)

e Regularization technique to prevent overfitting

(3) Layer Normalization
e Normalizes input across the features

e Improves the training stability and convergence

Qutput
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’
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Feed
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Encoder Layer

import torch
import torch.nn as nn

class TransformerEncoderLayer(nn.Module):

def

def

__init_ (self, model size, num_heads, ff hidden size, dropout):
super()._ init_ ()

# Define sizes of Q/K/V based on model size and number of heads
gkv_size = max(model size // num_heads, 1)

# MultiHeadAttention block

self.mhal = MultiHeadAttention(num_ heads, model size, gkv_size)
self.dropoutl = nn.Dropout(dropout)

self.norml = nn.LayerNorm(model size)

# FeedForward block

self.ff = FeedForward(model size, ff_hidden size)
self.dropout2 = nn.Dropout(dropout)

self.norm2 = nn.LayerNorm(model size)

forward(self, source):
# MultiHeadAttention block

outl = self.mhal(source, source, source)
outl = self.dropoutl(outl)
outl = self.norml(outl + source)

# FeedForward block

Self-Attention

out2 = self.ff(outl)
out2 = self.dropout2(out2)
out2 = self.norm2(out2 + outl) Q — K — V

# Return final output
return out2

Qutput
Probabilities
e
‘_Add & Norm N
Feed
Forward
s ™\ Add & Norm
[_Add & Norm | :
— —Add & hot Multi-Head
Feed Attention
Forward ) ¥ Nx
=
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Multi-Head Multi-Head
Attention Attention
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 — —
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Encoder — Self-Attention

e Example: German-to-English machine translation

ot ]
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]

softmax |Hause

I ging ging
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). 29)- 2
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]
})
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/dkj 1 Hause Hause

\

Ich
ging
nach
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word embeddings re-weighted
based on attention weights

Self-Attention Matrix

(rows sum up to 1!)

@ O OO Hause
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OO @O 9ing
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Complete Encoder

import torch
import torch.nn as nn

class TransformerEncoder(nn.Module):

7 def _ init_ (self,

num_layers=6, # Common default values

: model size=512,
10 num_heads=8,
1 ff_hidden_size=2048,
dropout= 0.1):

init_ ()

# used 1in original paper

super().

15 # Define num_layers (N) encoder layers
16 self.layers = nn.ModuleList(
17 [ TransformerEncoderLayer(model size,
18 num_heads,
19 ff hidden size,
20 dropout)

1 for _ in range(num_layers)

—

)

25 def forward(self, source):
26 # Push through each encoder layer
27 for 1 in self.layers:
28 source = l(source)
C return source
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Decoder Layer

e The same components as Encoder Layer

Multi-Head Attention but 2 MHA blocks

(one for output, once for input/output)

Feed Forward Layer

The same additional concepts
(residual connections, dropout, layer normalization)

Multiple layers for complete decoder

Qutput
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Decoder Layer

import torch
import torch.nn as nn

class TransformerDecoderLayer(nn.Module):

def init_ (self, model_size, num_heads, ff_hidden size, dropout):

27 def

super().

# Define sizes of Q/K/V based on model size and number of heads
= max(model_size // num_heads, 1)

gkv_size

# 1st MultiHeadAttention block (decoder input only)
self.mhal = MultiHeadAttention(num_heads, model size, qgkv_size)

init_ ()

self.dropoutl = nn.Dropout(dropout)
self.norml = nn.LayerNorm(model size)

# 2nd MultiHeadAttention block (encoder & decoder)
self.mha2 = MultiHeadAttention(num_heads, model_size, q

self.dro

pout2 = nn.Dropout(dropout)

self.norm2 = nn.LayerNorm(model_size)

self.ff = FeedForward(model size, ff hidd

self.dro

self.norm3 = nn.LayerNorm(model_s

forward(
# 1st Mu
outl = s
outl =

outl = s
# 2nd Mu
out2 =

out2 = s
out2 = s
# FeedFo
out3 = s

self.mha2(outl, memory, memory)

pout3 = nn.Dropout(dropout)

self, target, memory):
ltiHeadAttention block
elf.mhal(target, target, target)

self.dropoutl(outl)

elf.norml(outl + target)
ltiHeadAttention block

elf.dropout2(out2)
elf.norm2(out2 + outl)
rward block

elf.ff(out2)

out3 = self.dropout3(out3)
out3 = self.norm3(out3 + out2)
# Return final output

return out3

—

Self-Attention
Q=K=V

T~

Source-Target Attention

Q#FK=V

memory = output

of encoder
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Decoder — Attentions

e Example: German-to-English machine translation
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Complete Decoder

import torch
import torch.nn as nn

class TransformerDecoder(nn.Module):

7 def

25 def

__init_ (self,
num_layers=6,
model size=512,
num_heads=8,
ff_hidden_size=2048,
dropout= 0.1):
super().__init_ ()
# Define num_layers (N) decoder layers
self.layers = nn.ModuleList(
[ TransformerDecoderLayer(model size,
num_heads,
ff hidden size,
dropout)
for _ in range(num_layers)

)

forward(self, target, memory):
# Push through each decoder layer
for 1 in self.layers:

target = l(target, memory)
return target

# Common default
# used 1in original paper
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Complete Transformer

import torch
import torch.nn as nn

class Transformer(nn.Module):

def

def

__inpit_ (self,
num_encoder_layers=6, # Common default values
num_decoder layers=6, # used in original paper
model size=512,
num_heads=8,
ff_hidden size=2048,
dropout= 0.1):

super(). init ()

# Definer encoder

self.encoder = TransformerEncoder (
num_layers=num_encoder layers,
model size=model size,
num_heads=num_heads,
ff _hidden size=ff hidden size,
dropout=dropout

)

#Define decoder

self.decoder = TransformerDecoder(
num_layers=num_decoder layers,
model_size=model size,
num_heads=num_heads,
ff_hidden size=ff hidden size,
dropout=dropout

)

forward(self, source, target):
memory = self.encoder(source)
return self.decoder(target, memory)

Qutput
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Masking — Purpose

e Masking: Ignore attention between “invalid” words — most commonly
m Padding in batches with sequences of different lengths

m “Hidden” words in models for Language Modeling

m “Future” words in models for text generation

e Masking padded words

best
i

top
such
could

the

movie
really
movie
a
have

story

ever
liked
<PAD>
dumb
been

was

<PAD> |<PAD>
only the
<PAD> |<PAD>
and silly
much | worse

not that

—

Masking matrix )/

o O o o o o

0
0
0
0
0
0

0
0

ajj +0= Qjj

a;j + (—o00) = —o0

/

Becomes 0 probability
after Softmax!
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Masking for Language Modeling

e Masked Language Model — basic idea
m Mask a random number of words in a input sequence (e.g., BERT: 15%)

m Train model — transformer encoder — to predict masked words

city city

my my
bank bank

Masking matrix )/
N A R
Transformer Encoder :>
0 0 0
| | o

| opened a [MASK]account for [MASK] savings

—00

0

0 —o0
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Masking for Text Generation

Decoder is autoregressive

m Output is generated word-by-word

m During training, decoder gets complete output sequence
(i.e., the decoder could “cheat” and look at subsequent words)

m Ignore attention between a word and “future” words

m Only affects self-attention MHA block

Example

m German-to-English machine translation

<S>

went

home
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Attention — Performance Considerations

e Attentions is all you need...but it doesn’t come for free

m Pro: no sequential processing required =» easy parallelize

m Cons: number of operations for attention: N? (N = sequence length)

Ich

r?;:ﬁ( Q lch [[ ] lch |[
S i = W
dk Hause || ] Hause |[

ch [ @OOO

ging | O@OO

nach | OQ @O

Hause | OO O @
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Attention — Performance Considerations

Alternative: “restricted” attention

m Does not compute attention between all pairs of words

m Main goal: make number of operations to be in O(N)

Example:
] - [
e g -
[ [
O 4 | -
e m “m
(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

Source: Big Bird: Transformers for Longer Sequences (2021)
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https://arxiv.org/pdf/2007.14062.pdf
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In-Lecture Activity (5 mins)

£ i % Architecture Order: Doric lonic Corinthian




Break



Architectures

Encoder-Only
Sentence classification
Named Entity Recognition
Masked Language Modeling
Extractive Q&A, etc.

BERT
(Oct 2018)

RoBERTa
(May 2019)

DistilBERT
(Oct 2020)

Requires fine-tuning on downstream tasks

Transformer
(Jun 2017)

Encoder—-Decoder
e Machine Translation
e Text Summarization
e Generative Q&A, etc.

Decoder-Only

e Next Token Prediction
e Text Generation
e Causal Language Modeling

BART T5 GPT LLaMA
(Oct 2019) (Oct 2019) (Oct 2019) (Feb 2023)
GPT-1 GPT-2 GPT-3 GPT-4 GPT-5
(Jun 2018) (Feb 2019) (May 2020) (Mar 2023) (2024?)

fine-tuning not
always needed

Pretrained models good for many tasks
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The LLM Craze | "™ & 8 el o

2023
G OPT-IMLIPN i
e [ChatcPT® LooMZ[ %] Galacticaley) =L
B Sparron© %
Observation: Decoder-only dominates! (BLOOM] #] o &
YaLM Minerva
. . OPT]
e Simpler architecture & setup PalMG
[Chinchilld®
. . InstructG GPT-NeoX
e More cheaply to train (relatively) [PLPT}@ CaAG 2
@) GLo opher] O [ERNIES. 0% I -

e More suitable for text generation
[Jurassic-1

e Good zero-shot generalization

LR 4
open source 11 :?b'
closed source TElEs
GPT-2[5) ER—e
3N
=16 5 : gr‘a
6 (2]
Ca— (]
7 8 G

Source: Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond (2023)
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https://arxiv.org/abs/2304.13712
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BERT (Bidirectional Encoder Representations from Transformers)

e BERT

m Uses only the Transformer Encoder

m Self-supervised training

e Train on 2 learning objectives

m MLM: Masked Language Model

(predict the masked words in input sentences)

m NSP: Next Sentence Prediction

(predict if the second sentence was indeed followed by the first sentence)

Source: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2018)

ﬁ: Mask LM Mask LM \
~ 1t *

(0] b)) - ()
BERT

(Bl & ] [ ][ Eeml[ & ). [&/]

L L LI L

T
EE SEm.- B

Masked Sentence A Masked Sentence B

*
Unlabeled Sentence A and B Pair
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https://arxiv.org/pdf/1810.04805.pdf

BERT (Bidirectional Encoder Representations from Transformers)

Pretraining

Mask LM

ﬁsp
= . - o

Mask LM
*

v )]0 -

L)

BERT

| EN || E[sep]“ E1’ |

L& |

= e .

B

Masked Sentence A

- = = 5 . [
L 2. G

Masked Sentence B
. 3
Unlabeled Sentence A and B Pair

Fine-Tuning for specific task

M@D

Start/End Spﬁ

a5 —a—ir—
[ T ][ Tiser) ][ T, J [ Tw ]
. .»
B BERT
-- EdIE EENET

r%

ﬂ ! TokN ] [ [SEP] Tok1
\\\\ Question

Question Answer Pair

Paragraph

=

Source: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2018)



https://arxiv.org/pdf/1810.04805.pdf

ROBERTa (A Robustly Optimized Bidirectional Encoder Representations from Transformers)

e RoBERTa = BERT scaled up

m Same architecture, similar training setup (MLM only), but longer training, using more data

m Dynamic masking: masking done during training time
(BERT uses “static” masking: masking done during preprocessing)

e Other BERT variants
m DistiiBERT

m ALBERT

Source: Humboldt-Universitat zu Berlin website

Comparison BERT RoBERTa DistilBERT ALBERT
October 11,2018 July 26,2019 October 2,2019 September 26,2019
Parameters - el Base: 125 Base: 66 Base: 12M
Large: 340M Large: 355 ' Large: 18M
Base: 12 /768 /12

Layers / Hidden
Dimensions / Self-

Base: 12 /768 /12
Large: 24 / 1024 / 16

Base: 12 /768 /12
Large: 24 /1024 / 16

Base: 6 /768 /12

Large: 24 / 1024 / 16

Attention Heads

Training Time

Base: 8 x V100 x 12d
Large: 280 x V100 x 1d

1024 x V100 x 1 day Base: 8 x V100 x 3.5d
(4-5x more than BERT) (4 times less than BERT)

[not given]
Large: 1.7x faster

97% of BERT-base’s

89.4 on GLUE

Outperforming SOTA in
Perfi 88.5 GLUE
SEAance Oct 2018 en performance on GLUE
BERT + CCN +
Pre-Training BooksCorpus + English ObenWebText iV;:ories BooksCorpus + English  BooksCorpus+ English
Data Wikipedia= 16 GB P - 160 GB Wikipedia=16 GB Wikipedia= 16 GB
Method Bidirectional Trans- BERT without NSP, BERT Distillation BERT with reduced para-|
former, MLM & NSP  Using Dynamic Masking meters & SOP (not NSP)



https://humboldt-wi.github.io/blog/research/information_systems_1920/uncertainty_identification_transformers/
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T5 (Text-to-Text Transfer Transformer)

Core Concepts

m Basic encoder—decoder Transformer architecture

m Multi-task learning: training of model on multiple tasks at the same time
(e.g., machine translation, coreference resolution, text summarization, sentence acceptability judgment, sentiment analysis)

m Each task is (re-)formulated as text-to-text task to match encoder—decoder architecture
(including task-specific prefixes)

[ "translate English to German: That is good."

"Das ist gut."

"cola sentence: The
course is jumping well."

"not acceptable“]

L. on the grass. sentence2: A rhino
training data sample reformulated as a text-to-text task

Example: Semantic Text Similarity Benchmark (STSB) "stsb sentencel: The rhino grazed
e
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county.”

Source: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (2019) 67



https://nyu-mll.github.io/CoLA/
https://huggingface.co/datasets/PhilipMay/stsb_multi_mt
https://arxiv.org/pdf/1910.10683.pdf

T5 (Text-to-Text Transfer Transformer)

Evaluation

m The authors evaluated the multi-task learning
approach on different architectures

m Best results: encoder—decoder architecture

Language model

Prefix LM

Architecture Objective  Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising H M/2  80.88 18.97 14.59 68.42 26.38  38.40  26.95
Language model  Denoising 2 M 74.70 17.93 61.14 55.02 25.09 35.28  25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 3798 27.39

Source: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (2019)



https://arxiv.org/pdf/1910.10683.pdf

BART (Bidirectional and Auto-Regressive Transformers)

Core Concepts

m Basic encoder—decoder Transformer architecture

m Trained by corrupting documents and then optimizing a reconstruction loss =» denoising
(Denoising: Minimising the cross-entropy between the decoder’s output and the original document)

m Various transformation techniques to corrupt input documents

(AC. E.) (DE.ABC.) (C.DE.AB)

Token Masking  Sentence Permutation Document Rotation

. 2
@2cED ® (aBCc.DE.) @ (NDEED

Token Deletion Text Infilling

Source: BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension (2019)
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https://arxiv.org/pdf/1910.13461.pdf

BART = BERT + GPT

BERT

e Random tokens are replaced
with masks (e.g., [MASK])

e Input is encoded bidirectionally
(not suitable for text generation)

BART

e Arbitrary noise transformation
(not just BERT-like masking)

e Bidirectional encoding +
auto-regression word prediction

B D
S

Bidirectional

< Encoder "

FF1r¥
A_C_E

ABCDE
P4 L4

Autoregressive
+ g

Decoder

>

FT 1]

<s>ABCD

e B

ABCDE
REEE,

Bidirectional
< Encoder

E> Autoregressive
Decoder

EEEES
A _B _E

>

FFfif

<ssSABCD

GPT

e Auto-regressively word prediction
(suitable for text generation)

e Words can only condition on
leftward context (cannot learn
bidirectional interactions)

Source: BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation. and Comprehension (2019) 70



https://arxiv.org/pdf/1910.13461.pdf
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G PT (Generative Pretrained Transformer)

o G PT Feed

m Uses only the Transformer Decoder Forward

without the encoder attention block
(alternatively: encoder with “do not look ahead” masking)

m Self-supervised training Nx

- PR Masked
e |earning objectives Selni
m Auto-regressive Language Model Attention
T
\ J
. £ . Positional
e (Very) oversimplified history of GPT & Eooding
m GPT-1/2/3: text only, “just” making it larger; GPT-4: multimodal Er,%‘;;’gfng
m GPT-3+: reinforcement learning from human feedback (RLHF) T
Outputs
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G PT (Generative Pretrained Transformer)

e GPT-3 models

Model Name Nparams Tlayers Omodel Theads dhead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 104
GPT-3 Large 760M 24 1536 16 96 0.5M 510
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0 x 10~
GPT-3 2.7B 2.7B 52 2560 32 80 IM 16 se 104
GPT-36.7B 6.7B 32 4096 32 128 2M 152 TO
GPT-3 13B 13.0B 40 5140 40 128 2M EBise TH
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10~4

Source: Lanquage Models are Few-Shot Learners (2020)
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https://arxiv.org/pdf/2005.14165.pdf

GPT — RI.HF (Reinforcement Learning from Human Feedback)
e RLHF — two common setups

m Use human-generated responses to prompts to fine-tune the pretrained model

m Generate multiple response for same prompt; human ranks response; use ranking for fine-tuning

Responses Ranked Responses

| |
| |
Prompt ::> Pretrained LM ::> l | ::> ::>L‘—‘_L l

T
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I.I.aMA (Large Language Model Meta Al)

e Decoder-only architecture very similar to GPT (any many others) — main tweaks
m Pre-normalization: layer normalization is put inside the residual blocks

m SwiGLU (swish-Gated Linear Unit) activation: non-monotonic, parameterized activation function

m Rotary Positional Embeddings: encode word positions by rotating word embedding vectors

e Open LLM

m Trained exclusively on
publicly available data

English CommonCrawl

Stack Exchange
ArXiv

Gutenberg and Books3

Wikipedia

ca
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LLaMA — Pre-Normalization

e Post vs. pre-normalization
m Post: layer normalization between
residual blocks (original transformer)

m Pre: layer normalization inside
residual blocks (LLaMA, etc.)

m Observed benefit of pre-normalization:

m Well-behaved gradients at initialization

m Significantly faster training

Source: On Layer Normalization in the Transformer Architecture (2020)

Original

Transformer

X1+1

T

Layer Norm

T

addition

A

L
A

Layer Norm

addition

i

FFN

\

Multi-Head
Attention

~—{H

LLaMA
X1+1
addition
A
FFN
T

h

I addition
A

Multi-Head
Attention

T

A

X1
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http://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf

I.I.aMA — SW'GI.U (Swish-Gated Linear Unit)

GLU - Gated Linear Unit (paper) Swish (paper)
e Gating proposed in LSTM paper (1997!) e Simple parameterized activation function
e Parameterized activation function e Approach: "try and see what works best"

e Many other variants proposed

GLU(z) = (zW +b) @ o(xV + ¢) Swish(z) = z ® o(Bz)

e B

SwiGLU (z) = (zW + b) ® Swishg(xV + ¢)
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https://arxiv.org/pdf/1612.08083.pdf
https://deeplearning.cs.cmu.edu/F23/document/readings/LSTM.pdf
https://arxiv.org/pdf/1710.05941v2.pdf

I.I.aMA — SW'GI.U (Swish-Gated Linear Unit)

ReLU (Linear Rectified Unit)

| =——— RelU

Swish
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LLaMA — Rotary Positional Embeddings (RoPE)

—
Enhanced |[_| [ | |- | EI H-IH - LD
Transformer [ [ | | | ¢+ | CI 2 I - m
with [T -+ | 3 S R --- L
Rotary [TIT[TT] «-+ | a I - S
Position [ [ [ [ ] ««- | BN --- B
Embedding [T ][]« | 6 [ ——— P - -

Query / Key Position Position Encoded Query / Key

Source: RoFormer: Enhanced Transformer with Rotary Position Embedding (2021)



https://arxiv.org/pdf/2104.09864.pdf
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e Contextual Word Embeddings

Motivation
ELMo

e Transformers

Positional Encoding
Core Layers
Encoder & Decoder

e Extended Concepts

Masking
Restricted Attention

e Transformer-based LLMs

Overview

Encoder-only: BERT, RoBERTa
Encoder-Decoder: T5, BART
Decoder-only: GPT, LLaMA
Opportunities & Challenges
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The Future of Large Language Models — Opportunities

Language models are an old idea — What changed?

New architectures (here: Transformers)
More computing power
More and diverse data

More resources (i.e., money, manpower)

~N

- =¥ Exploding size/scale of models

Size of models has crossed
some kind of threshold

=» LLMs show Emergent Abilities

e

Abilities that were not explicitly programmed into
the model but emerge from the training process
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The Future of Large Language Models — Opportunities

Emergent abilities

[ | Language Generation (coherent and fluent text in a variety of styles and genres, from news articles to poetry)

m Question Answering (answering complex questions by extracting information from large amounts of text data)

m Translation (translating text between different languages with high accuracy)

m Summarization (generate concise summaries of long documents, allowing for efficient information extraction and consumption)

| Dialogue Generation (engage in natural and coherent conversations with humans)

m Common Sense Reasoning (basic degree of common sense reasoning; predicting outcome of simple scenarios)

=» Question: Can a language model really do these tasks?
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The Future of Large Language Models — Challenges

ChatGPT

EXPLAINER What is ChatGPT and The impact of Large Language Models on Law Enforcement
why are schools blocking it?

Criminals will soon use ChatGPT to make

- - scams more convincing, experts warn;
Will ChatGPT take my job? Here are 20 only 'a matter of time' before S'pore hit

professions that could be replaced by Al

ChatGPT Poses Dangers for Online Dating Apps
Hallucinations, Plagiarism, and ChatGPT

Cybercriminals are using ChatGPT to create malware
: How universities can start to
grapple with ChatGPT’s capabilities A fake news frenzy: why ChatGPT could

be disastrous for truth in journalism

Hollywood: Writers Guild considering

ChatGPT-written scripts, no Al credits Pause Giant Al Experiments: An Open Letter
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The Future of Large Language Models — Challenges

ChatGPT invented a sexual harassment scandal 1,100+ notable signatories just signed an
and named a real law prof as the accused open letter asking ‘all Al labs to

immediately pause for at least 6 months’
Italy orders ChatGPT blocked
citing data protection concerns ] . .
Al can be racist, sexist and creepy. What should we do about 1t?

GPT-4 kicks Al security

Europol sounds alarm as crooks tap into ChatGPT-4

risks into higher gear

: What Have Humans Just Unleashed?
GPT-5 expected this year, could make J
ChatGPT in distinguishabl e fr om a human Call it tech’s optical-illusion era: Not even the experts know exactly
what will come next in the Al revolution.

Experts Warn of Nightmare Internet Filling  Did a Robot Write This? We
With Infinite AI-Generated Propaganda Need Watermarks to Spot Al
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The Future of Large Language Models — Challenges

Exclusive: OpenAl Used Kenyan Workers on Less Australian Mayor Th.reatens to Sue
Than $2 Per Hour to Make ChatGPT Less Toxic OpenAl for Defamation by Chatbot

Artists sue Al company for billions, alleging ChatGPT banned on Q&A site over
‘substantially harmful’ answers

"parasite” app used their work for free

$120bn wiped off Google after Bard Al chatbot gives wrong answer  Chat-GPT Pretended to Be

Blind and Tricked a Human
Into Solving a CAPTCHA

Microsoft tries to justify A.l‘s tendency to give
wrong answers by saying they’re ‘usefully wrong’

i L Al isn't close to becoming sentient -
ChatGPT lies about scientific results, needs the real danger lies in how easily

open-source alternatives, say researchers we're prone to anthropomorphize it
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The Future of Large Language Models — Challenges

...and the biggest questions: Why does this all seem to work?

We have extended the GLU family of layers and proposed their use in Transformer. In a transfer-learning
setup, the new variants seem to produce better perplexities for the de-noising objective used in pre-training,
as well as better results on many downstream language-understanding tasks. These architectures are simple
to implement, and have no apparent computational drawbacks. [We offer no explanation as to why these
architectures seem to work; we attribute their success, as all else, to divine benevolence.

Source: GLU Variants Improve Transformer (2020)
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https://arxiv.org/pdf/2002.05202.pdf

Summary

e Transformer architecture
m Encoder-decoder architecture

m Core concept: attention (self-attention + cross attention)

m Additional concepts: positional encoding, masking

e Large Language Models (LLMs)

m Currently dominated by transformer architecture

m Main categorization: encoder-only, encoder-decoder, decoder-only
(with decoder-only models right now dominating the field)

m Still continuously growing model zoo of LLMs

=¥ Last lecture: LLMs — problems, challenges, strategies
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Pre-Lecture Activity for Next Week

Pre-Lecture Activity for Next Week

e Assigned Task

m Do a web search and answer the question stated below

m Post you answer(s) to the question into the Discussion on Canvas (please cite or quote your sources)

“‘What is the relationship between information retrieval
and natural language processing?”

Side notes:
e This task is meant as a warm-up to provide some context for the next lecture
e No worries if you get lost; we will talk about this in the next lecture
e You can just copy-&-paste others' answers but this won't help you learn better
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Outlook for Next Week: Classmcatlon Appllcatlons



https://unsplash.com/photos/34zq7tzqRSw
https://unsplash.com/@franganillo

