National University
of Singapore

NUS | Computing

Lecture 9

CS4248: Natural Language Processing

Lecture 9 — Trees

o)
=
(7))
N
[¢))
O
o
S
o
(<)
o)
©
=
o)
C
(1)
-
©
S
=
=)
©
Z
o)
<
AN
<
n
(&)

Announcements

e Assignments
m Assignment 1: Graders are examining your requests.

m Assignment 1: We are also processing our requests on possible academic dishonesty.

m Assignment 3 out: Theory and Practice, 3 problems.

e Project
m Intermediate Updates to be disseminated soon. 5% of your total grade, uniformly distributed.
m First TEAMMATES intra-peer evaluation has been completed. Please check your own results.
m Min and Chris will be announcing a sign-up sheet for teams to optionally consult us on their project.

m Teams can be nominated or self-nominate for STePS (week 13 wed) for poster presentation instead

Outline

e Syntactic Parsing
m Quick recap: RegEx
m Context-free grammars
m Structural Ambiguity
m Chomsky Normal Form

Lecture 9

CYK Parsing Algorithm

m Base membership algorithm

m Find all parse trees with backtracking
m Probabilistic parsing

m Evaluation of parsers

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

Throwback — Regular Expression

e Equivalence

m Regular Expressions describe Regular Languages
(most restricted types of languages w.r.t Chomsky Hierarchy)

m Regular Language = language accepted by a FSA

Example: FSA that accepts the Regular Language
described by the Regular Expression I(o+l)+

Regular Expression
I(o+I)+

@ Regular Language
{lol, loooal, lolol, loooloal, ...}

Chomsky Hierarchy
(Source: Wikipedia)

recursively enumerable

context-sensitive

context-free

https://en.wikipedia.org/wiki/Chomsky_hierarchy

Regular Expressions — Limitations

e Not all languages can be described using RegEx
m Example:

{0"1" | n > 0} = {¢,01,0011,000111, 00001111, ...}

=» Natural Language is not a Regular Language
m Natural language allows for nested structures (center embeddings)

The food was delicious

The food Alice cooked was delicious

recursively enumerable

context-sensitive

context-free

The food Alice the sister of Bob cooked was delicious

Quick Quiz

Yes

Can you built an FSA/ RegEx that

accepts the language below? No

{¢,01,0011,000111}

It's Monday night,
I'm out...

OO W >»

|
|
|

Syntax & Constituency

e |Important questions
m How are words combined to form phrases?

How meaning is mapped onto

i ?
m How are phrases combined to form longer phrases” what language structures?

m How are phrases are combined to form sentences?

e |Important concept: constituency = phrase structure
m Constituent = group of words that behave as a single unit

Constituents

e Constituent — Definition

m Group of words that behaves as a single unit or phrase
(by default: individual words are constituents, but there are exceptions)

m Sentences can be described as a hierarchical structure of constituents (in a bit: parse trees)

e Question: How do we know a group of words forms a constituent?
m Handwavy answer: Group of words "makes sense" on its own

a loud shot

"She heard a loud shot from the bank during the time of the robbery." a loud shot from the

a loud shot from the bank

m Formal answer: Constituency Tests

COHStituenGy TBStS (some examples)

e Topicalization
m Only a constituent can be moved to different locations in a sentence

"They met at 8 pm for lunch." — "They met for lunch at 8 pm." — "At 8 pm, they met for lunch.”

e Proform substitution
m Only a constituent can be substituted with a proform like it, that, them, then, there, etc.

"Chris went back to Germany." =» "Chris went there."

e Fragment Answers
m Only a constituent can answer a question, while retaining the meaning of the original sentence.

"Alice was hit by the green car.”" — Q: "What hit Alice?" =» "The green car."

Quick Quiz

Which is not a constituent
in the sentence below?

"All students learned about
syntactic parsing this week"

OO W >»

All students }

<
learned about
syntactic parsing

this week

J

learned about }

10

Lecture 9

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

Outline

e Syntactic Parsing

m Quick recap: RegEx

m Context-free grammars
m Structural Ambiguity

m Chomsky Normal Form

CYK Parsing Algorithm

m Base membership algorithm

m Find all parse trees with backtracking
m Probabilistic parsing

m Evaluation of parsers

11

Context-Free Grammars (CFGs)

e Context-Free Grammars

m Most common way to capture constituency and ordering =¥ good fit for natural language!
(in fact, context-free grammars were first used to study human languages to describe the structure of sentences)

m Define what meaningful constituents are and how a constituent is formed out of other constituents

m More powerful than RegExs as they can express recursive structure

(in contrast, context free grammars can describe regular languages)

special start symbol

:
S — NP VP

NP — Det Noun

VP — Verb NP

Det — a | the
Noun — man | meal | flight
Verb — saw | booked

v
set of rules or productions

e Example

Non-terminal symbols
m Symbols that can be replaced according to rules
m For natural language grammars: phrase names, part of speech

Terminal symbols
m May be the output of a rule; cannot be changed/replaced further
m For natural language grammars: words/tokens

12

Context-Free Grammars (CFGs)

e Application of rules — example

S — NP VP
— Det Noun VP
— the Noun VP
— the man VP
— the man Verb NP
— the man booked NP
— the man booked Det Noun
— the man booked a Noun
— the man booked a flight

[

S — NP VP
NP — Det Noun
VP — Verb NP
Det — a | the
Noun — man | meal | flight
Verb — saw | booked

Visualization as Parse Tree

/NP\/\ p
Det Noun Verb/\P

the man booked Det Noun

a flight

Derivation: sequence of rules/productions used to generate a string of words

13

CFG — Formal Definition

e ACFGisad4tuple (N,X,R,S)

N — set of non-terminal symbols
>, — set of terminal symbols

R — set of rules

Allowed format for all rules

A—a wih AEN, a € (NUY)

S — start symbol

These restrictions make
a grammar context-free!

Example
N = {NP, VP, Det, Noun, Verb}

Y ={a, the, man, meal, flight, saw, booked}

S — NP VP
NP — Det Noun
VP — Verb NP
Det — a | the

14

CFG — Running Example

S — NP VP
S — Aux NP VP
S — VP
NP — Pronoun
NP — ProperNoun
NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb
VP — Verb NP
VP — Verb NP PP
VP — Verb PP
VP — VP PP
PP — Prep NP

Det — the | a | that | this
Noun — book | flight | meal | money
Verb — book | include | prefer
Pronoun — I | she | he | me
ProperNoun — Singapore | Frank furt | STA
Aux — do | does | did
Prep — from | to | on | near | through

Important requirements to make it a CFG
e Only single non terminals on the left-hand side

=» Application of a rule does not depend on a context

15

Quick Quiz

How many issues make the
grammar blow not a CFG?

S — NP VP
S—SCCS
NP — Pronoun
NP — ProperNoun
NP — Det Nominal
Nominal — the Noun
Nominal — Nominal Noun
VP NP — Verb NP
VP — Verb
VP — Verb NP PP
VP — Verb PP
the — Det

OO W >»

16

Outline

e Syntactic Parsing
m Quick recap: RegEx
m Context-free grammars
m Structural Ambiguity
m Chomsky Normal Form

Lecture 9

CYK Parsing Algorithm

m Base membership algorithm

m Find all parse trees with backtracking
m Probabilistic parsing

m Evaluation of parsers

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

17

Ambiguity

e Ambiguity of Natural Language

m Common: multiple ways
to interpret a sentence

m Different interpretation =¥ different meaning

=» Structural Ambiguity

e A grammar can assign more
than one parse to a sentence

L] Example (using our toy grammar).

"I book the flight through Singapore”

S

N
Prorloun Verb/\NP
i bolok Dm‘linal
tl’lle Nom(\PP
Nolun Prep/\NP
flilght thr(l)ugh Prope‘rNoun
Singa‘lpore
S
N
Pror‘wun Veﬁ\PP
\ \ T — T
I book Det Nominal Prep NP
t]"le Nco‘un thrt‘bugh PropeJrNoun
fli‘ght Singa‘tpore
S
o w
ProrLoun VB///’\PP
L Verb/\NP Prep/\NP
I — T I [
book Det Nominal through ProperNoun
t}lle Nolun Singalipore
flight

18

Structural Ambiguity

e Two common types of Structural Ambiguity

(1) Attachment Ambiguity

e A particular constituent can be attached
to the parse tree at more than one place

(2) Coordination Ambiguity

e Phrases can be conjoined by conjunction like "and”, "or",
"but”, "because”, "if", etc.

e Different types of conjunctions
(coordinating conjunctions, correlative conjunctions, correlative conjunctions)

19

Attachment Ambiguity

"I book the flight through Singapore”

S

N e
Pronloun Verb/\NP
i boLk D;;/’////\\\\:i;;Mal
tllqe Nomfal/\PP
Nolun Prep/\NP
flilght thr(laugh Propeeroun
Sing;pore

"through Singapore" attached to
noun phrase related to "flight"”

S
/"/\
NP VP
| -
Pronoun VP PP
| — — T
I Verb NP Prep NP
| — T~ | |
book Det Nominal through ProperNoun
| | |
the Noun Singapore
|
flight

“through Singapore" attached to
verb phrase related to “book”

(like booking a flight through an agent)
20

Coordination Ambiguity

"SIA has the best meals and entertainment”

s
N VP
NNP VBZ WP
S ey —
tl’lle belst Np/cZ\Np
NNS and NN
mecltls entertaliinment

"best" refers to both the meals
and the entertainment

S
N Ve
NP VBZ . we
SI,A h;s Nf’////C(:NNP
DT 45 WNS and NN

l | l I

the best meals entertainment

"best" refers to only the meals
but not the entertainment

Note: This example used a different grammar since our toy grammar does not support conjunctions.

21

Summary So Far...

e Parsing as a 2-part task

(1) Syntactic Parsing
e Extract all possible parses for a sentence

e Typically requires a grammar transformation step
("binarization" of grammar to ensure efficient parsing)

(2) Syntactic Disambiguation
e Score all parses and return the best parse

e Scores commonly expressed as probability

22

Outline

e Syntactic Parsing
m Quick recap: RegEx
m Context-free grammars
m Structural Ambiguity
m Chomsky Normal Form

Lecture 9

CYK Parsing Algorithm

m Base membership algorithm

m Find all parse trees with backtracking
m Probabilistic parsing

m Evaluation of parsers

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

23

Grammar Transformation g crey

e |Important requirement: binarized rules
m No more than 2 non-terminals on the right-hand side of rules

m Crucial for a cubic time parsing of CFGs

=*» Common transformation: Chomsky Normal Form
m Restrictions on rules compared to general CFG

Allowed format for all rules
A—a with Ae N, ac(NUX)

Q¢ is either 1 terminal OR 2 non-terminals

24

Grammar Transformation

S — NP VP
S — Aux NP VP
S — VP
NP — Pronoun
NP — ProperNoun
NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb
VP — Verb NP
VP — Verb NP PP
VP — Verb PP
VP — VP PP
PP — Prep NP

Allowed format for all rules
A—a with Ae N, ac(NUX)

(v is either 1 terminal OR 2 non-terminals

Det — the | a | that | this
Noun — book | flight | meal | money
Verb — book | include | prefer
Pronoun — I | she | he | me
ProperNoun — Singapore | Frank furt | STA
Aux — do | does | did
Prep — from | to | on | near | through

Quick Quiz:
e Which rules do not conform to the Chomsky Normal Form?

e How can we transform the grammar to fix this?

25

Chomsky Normal Form (CNF)

e Two basic transformation steps

(1) Recursive removal of unary rules (and empty rules)

Nominal — Noun Nominal — book | flight | meal | money
Noun — book | flight | meal | money Noun — book | flight | meal | money

(2) Dividing n-ary rules by introducing new non-terminals

(n-ary rule = rule with n > 2 non-terminal on the right-hand side)

S—-XVP

->
S — Aux NP VP X s Aur NP

26

Toy Grammar in Chomsky Normal Form CNF

S — NP VP
S — X1 VP
X1 — Aux NP
S — Verb NP
S — X2 PP
S — Verb PP
S — VP PP
NP — Det Nominal
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb NP
VP — X2 PP
X2 — Verb NP
VP — Verb PP
VP — VP PP
PP — Prep NP

Det — the | a| that | this
Noun — book | flight | meal | money
Verb — book | include | prefer
Pronoun — I | she | he | me
PropNoun — Singapore | Frank furt | STA
Aux — do | does | did
Prep — from | to | on | near | through
S — book | include | prefer
VP — book | include | prefer
NP — I | she | he| me
NP — Singapore | Frank furt | STA
Nominal — book | flight | meal | money

Allowed format for all rules

A= a with Ae N, a€(NUY)

(¢ is either 1 terminal OR 2 non-terminals

27

CFG to CNF — Summary

e Transformation of a CFG to a CNF

m Every CFG can be transformed into a weakly equivalent CNF

-* Weak equivalence
m Two grammars generate the same set of sentences (identical expressiveness)

m The derivations generating the same sentences may differ
(recall that the CNF may introduce additional non-terminals)

(Strong equivalence: identical expressiveness + identical derivations)

28

Midterm Feedback

Course

Strongly Agree
Agree

Neutral

Disagree

Strongly Disagree

No Answer

Lecturer

Strongly Agree
Agree

Neutral

Disagree

Strongly Disagree

No Answer

I

-

Comms
M

v

Recommend

29

Midterm Feedback: Content

Lecture

nt
Strongly Agree v

<

Agree
Neutral
Disagree

Strongly Disagree

No Answer

Tutorial

Engage Complement Materials

Content

Strongly Agree

Agree
Neutral
Disagree

Strongly Disagree

<
%

I< i I
<

No Answer

%

30

Midterm Feedback: Content

Tutorial Leader

prosen | par] responsve
y W

Neutral

Strongly Agree

Disagree
Strongly Disagree

No Answer

Project Mentor

Overall

Champion

Understands Encourage Responsive

___I I
IQI
__-II
__—II
_—-I I
Ia

Strongly Agree

5
K
!

Agree

Neutral
Disagree
Strongly Disagree

No Answer

Improvements

Workload / Assignments

The course could benefit from slightly fewer assignments
workload, considering that students also have other subjects to
attend to. It's important to focus on the specificity and relevance
of the tasks rather than their quantity and complexity, ensuring
that each assignment meaningfully contributes to the learning
experience.

The workload in this module does seem a bit much. The amount
of effort required to do assignment 1 was a lot more than
exepcted, and knowing that there were 2 more assignments with
the same weightage was quite stressful.

Projects

| feel that the project component s severely lacking in guidance
and structure. The only guidance we had was 1. datasets and 2.
the rubrics. However, there's no reference point, or specific
expectations for the standard we had to hit.

My friends and | found out that if we used the research question
in the dataset.pdf, we might get a low grade due to how trivialit
is, and we're expected to come up with our own research
question, which was not clearly communicated.

Furthermore, having 6, potentially inexperienced people ina
group for the projectis difficult to manage, and a significant
amount of time is spent coordinating the group, rather than the
contentitself.

Recordings / Length

I refer to recorded lecture material to consolidate and review
some concepts | am unable to catch during the actual class.
However, the recordings take a long time to be uploaded on
Panapto, a week or more. Would appreciate if recordings were
uploaded more timely,

The tutorialis too short, instructor often does not go through the
entire tutorial sheet. There is also usually no time left at the end
of the tutorial slot to go through any additional questions.

The ~3 hrs lecture is too long. Many students, in my honest
opinion, do not appreciate the content well enough to be asking
relevant questions during lectures.f

32

Outline

e Syntactic Parsing
Quick recap: RegEx

m Context-free grammars
m Structural Ambiguity

m Chomsky Normal Form

Lecture 9

CYK Parsing Algorithm

m Base membership algorithm

m Find all parse trees with backtracking
m Probabilistic parsing

m Evaluation of parsers

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

33

CYK Parsing Algorithm

e CYK Parsing Algorithm — basic intuition

m Given is a context-free grammar (G in CNF

m Assume we have a sentence 11/ comprising 71 words

but at least one rule for at least one 1.

There can be multiple rules for different 7,

There existsarule A - B C in G with

G can generate W/ <|:> m D can generate wjwowswy . .. w; } y
inary

m C cangenerate w;iq...wy,_1Wn

B

A

split

wWiww3wWy . .. WWy41 - - - Wp—-1Wn

Note: Appreciate how the "binarization" of rules helps here!

C

34

CYK Parsing Algorithm

B

A

wWiww3wWy . .. WWy41 - .- Wp—-1Wn

C
. Th ist I that d
-» Recursive nature: G can generate B <:|> sreexistsaruie & = v 7 sofnal Xand Y

can generate a binary split of wjwows . .. w;

(until we reach individual words; then check the lexicon rules)

=* CYK Parsing Algorithm: Solve problem using Dynamic Programming

= Find all possible parses for all sequences of size k for k from 1 to n
35

CYK Parsing Algorithm

e Dynamic Programming approach

m Completing the parse table in a bottom-up manner
(very similar idea as we have seen for calculating the Minimum Edit Distance)

m Can to handle redundancy when computing the parse trees

e Different ways to visualize parse table
m Completely identical idea, only the indexing of table cells will differ

36

CYK — Pa rse Ta b I e [1,4] = all possible parses for

span "book the flight"

CYK parse table

| I | book | the | flight]/through | Singapore| e N x N table
[0,1] [0,2] [0,3] [0,4] / [0,5] [0,6] (N = #words in sentence)
e Each cell represents all the
[1,2] (1,3] (1,4] [1,5] [1,6] . -
possible parses for span [i, j]
Sl S 1451 19,51 e Algorithm: fill table starting
with cells for spans of length
[3,4] [3,5] [3,6]
L = 1 to cells for spans of
[4,5] e increasing lengths
1| 10,11, [1,2], [2,3], [3.4], [4,5], [5.6]
2 | 0,21, [1,3], [2,4], [3.5], [4.6]
3 | [0,3], [1.4], [2,5], [3.6]
4 | [0,4],[1,5], [2.6]
5 | [0,5],[1,6]
6 | [0,6]

37

CYK — Walkthrough

| I book the flight through Singapore
[0,1] [0,2] [0,3] [0,4] [0,5] [0,6]
Pronoun, NP
[1,2] [1,3] [1,4] [1,5] [1,6]
S VP,
Nominal,
Noun, Verb
[2,3] [2,4] 2,5] [2,6]
Det
[3,4] [3,5] [3,6]
Nominal,
Noun
[4,5] [4,6]
Prep
[5,6]
PropNoun,
NP

Quick quiz: What does it mean that cell
[1,2] contains start symbol S?

Cells for spans of length L = 1
=» only need to check lexicon

Fill each cell with the non-terminals that
can generate the corresponding word

Det — the | a] that | this
Noun — book | flight | meal | money
Verb — book | include | prefer
Pronoun — I | she | he | me
PropNoun — Singapore | Frank furt | STA
Aux — do | does | did
Prep — from | to | on | near | through
S — book | include | prefer
VP — book | include | prefer
NP — I | she | he| me
NP — Singapore | Frank furt | STA
Nominal — book | flight | meal | money

38

CYK — Walkthrough

| I book the flight through Singapore
[0,1] [0,2] [0,3] [0,4] [0,5] [0,6]
Pronoun, NP S
[1,2] [1,3] [1,4] [1,5] [1,6]
S VP,
Nominal,
Noun, Verb
[2,3] [2,4] 2,5] [2,6]
Det NP
[3,4] [3,5] [3,6]
Nominal,
Noun
[4,5] [4,6]
Prep PP
[5,6]
PropNoun,
NP

Cells for spans of length L > 1
=» Check for each binary split if there is a
production rule that can generate split

Example: Cell [0,2]
=» only 1 binary split: [0,1]/[1,2]

Check each possible pair of non-terminals
if binary split is the RHS of an existing
production rule =» Yes, add LHS to cell

— Pronoun S

— Pronoun VP

— Pronoun Nominal
— Pronoun Noun
— Pronoun Verb

— NP S _ _

s NP VP iny this rule exists
in our grammar

— NP Nominal

— NP Noun

— NP Verb

39

CYK — Walkthrough

| I book the flight through Singapore ‘
[0,1] [0,2] [0,3] [0,4] [0,5] [0,6]
Pronoun, NP S
[1,2] [1,3] [1,4] [1,5] [1,6]
s, VP, S, VP, X2
Nominal,
Noun, Verb
[2,3] (2,4] 2,5] [2,6]
Det NP
[3,4] [3,5] [3,6]
Nominal, Nominal
Noun
[4,5] [4,6]
Prep PP
[5,6]

Quick quiz: Can you already guess how the
parse table indicates that a sentence is valid?

PropNoun,

NP

Example: Cell [1,4]
e Dbinary split: [1,2] / [2,4]
e Dbinary split: [1,3] / [3,4]

Binary split: [1,2] / [2,4]
— S NP
— VP NP
— Nominal NP
— Noun NP

S,VP, X2 Verb NP 3 existing rules with

the same RHS

Binary split: [1,3] / [3,4]

Empty because [1,3] is empty

40

CYK — Walkthrough

| I book the flight through Singapore ‘
[0,1] [0,2] [0,3] [0,4] [0,5] [0,6]
Pronoun, NP S s
[1,2] [1,3] [1,4] [1,5] [1,6]
s, VP, S, VP, X2
Nominal,
Noun, Verb
[2,3] (2,4] 2,5] [2,6]
Det NP NP
[3,4] [3,5] [3,6]
Nominal, Nominal
Noun
[4,5] [4,6]
Prep PP
[5,6]
PropNoun,
NP

Example: Cell [2,6]
e binary split: [2,3] / [3,6]
e binary split: [2,4] / [4,6]
e binary split: [2,5] / [5,6]

Binary split: [2,3] / [3,6]

NP Det Nominal

Binary split: [2,4] / [4,6]

— | NPPP

Binary split: [2,5] / [5,6]

41

CYK — Walkthrough

| I book the flight through Singapore ‘
[0,1] [0,2] [0,3] [0,4] [0,5] [0,6]
Pronoun, NP S s
[1,2] [1,3] [1,4] [1,5] [1,6]
s, VP, S, VP, X2 S, VP, X2
Nominal,
Noun, Verb
[2,3] [2,4] [2,5] [2,6]
Det NP NP
[3,4] [3,5] [3,6]
Nominal, Nominal
Noun
[4,5] [4,6]
Prep PP
[5,6]

PropNoun,

NP

Example: Cell [1,6]

binary split: [1,2] / [2,6]

binary split: [1,3] / [3,6] (empty!)
binary split: [1,4] / [4,6]

binary split: [1,5] / [5,6] (empty!)

Binary split: [1,2] / [2,6]

— S NP

— VP NP

— Nominal NP

— Noun NP
S, VP, X2 | Verb NP

Binary split: [1,4] / [4,6]

— SPP
S,VP | VPPP
S,VP | X2PP

42

CYK — Walkthrough

| I book the flight through Singapore ‘
[0,1] [0,2] [0,3] [0,4] [0,5] [0,6]
Pronoun, NP S s S
[1,2] [1,3] [1,4] [1,5] [1,6]
s, VP, S, VP, X2 S, VP, X2
Nominal,
Noun, Verb
[2,3] (2,4] 2,5] [2,6]
Det NP NP
[3,4] [3,5] [3,6]
Nominal, Nominal
Noun
[4,5] [4,6]
Prep PP
[5,6]
PropNoun,
NP

Example: Cell [0,6]

binary split: [0,1] / [1,6]

binary split: [0,2] / [2,6]

binary split: [0,3] / [3,6] (empty!)
binary split: [0,4] / [4,6]

binary split: [0,5] / [5,6] (empty!)

Binary split: [0,1] / [1,6]
— Pronoun S
— Pronoun VP
— Pronoun X2
— NP S
S NP VP
— NP X2

Binary split: [0,2] / [2,6]

— SNP

Binary split: [0,4] / [4,6]

— SPP 3

CYK — Walkthrough

| I book the flight through | Singapore
[0,1] [0,2] [0,3] [0,4] [0,5] [0,6]
Pronoun, NP S s @
[1,2] [1,3] [1,4] [1,5] [1,6]
s, VP, S, VP, X2 S, VP, X2
Nominal,
Noun, Verb
[2,3] [2,4] [2,5] [2,6]
Det NP NP
[3,4] [3,5] [3,6]
Nominal, Nominal
Noun
[4,5] [4,6]
Prep PP
[5,6]
PropNoun,
NP

Our grammar can generate this sentence

since the start symbol S is in [0,6]

44

CYK Parsing Algorithm — Pseudo Code

function CKY-Parse(words, grammer) returns table

for j — from 1 to LENGTH(words) do
for all { A | A—»words[j] € grammar}
table[j-1, j] < table[j-1,j] U A

Base cases: For each terminal (i.e., word), find
all terminals that can generator this terminal

for j — from j-2 down to 0 do
for k—i+1 to j-1 do
for all { A| A—BC € grammar and B € table][i, k] and C € table[k, j] }
tableli, j1 < table[i, j1 U A

} Loop over all possible binary splits of spans of size 2 and increasing

If there is a rule (or more) that can generate the current
binary split, add LHS of rule to the cell of the current span

45

CYK Parsing Algorithm — Basic Python Implementation

ol el pud el el

O ~JNOWUL & WN

JN NN NN N I
WU B WN D

N

def cyk parse(tokens, rules):

n = len(tokens)

Initialize dynamic programming table
CYK = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0)))

Initialize parse: span of length 1
for s in range(n):
Find all non-terminals that can generate the terminal
for A, rhs in rules:
if rhs == (tokens[sl],):
CYK[s][s+1][A] =1

Handle spans of length 2+ using dynamic programming
for length in range(2, n+l):
for start in range(©, n-length+l): # Loop over all
end = start + length # the possible
for split in range(start+l, end): # binary splits
Check each production rule (ignore lexicon rules)
for A, (B, C) in_ [:rfor r in rules af ten(r[¥]) == 2]:
1s valid = 1 if B and C can generate left and right part
is valid = CYK[start][split][B] * CYK[split][end][C]
The same LHS needs to be able to generate the RHS only once
CYK[start][end] [A] = np.max([is valid, CYK[start][end][A] 1)

return CYK

46

CYK — Example: Invalid Parse

I book flight the through Singapore
[0,1] [0,2] [0,3] [0,4] [0,5] [0,6]
Pronoun, NP S
[1,2] [1,3] [1,4] [1,5] [1,6]
S, VP, Nominal
Nominal,
Noun, Verb
[2,3] [2,4] [2,5] [2,6]
Nominal,
Noun
[3,4] [3,5] 3,6]
Det
[4,5] [4,6]
Prep PP
[5,6]
PropNoun,
NP

47

CYK — Syntax vs. Semantic

e Syntactic parsing does not consider semantics

m Any constituent can be replaced with another constituent of the same type

m Example below: A noun can be replaced with any other noun

| 1 | book the flight through | Singapore |
[0,1] [0,2] [0,3] [0,4] [0,5] [0,6]
Pronoun, NP S S S
[1,2] [1,3] [1,4] [1,5] [1,6]
S VP, S, VP, X2 S, VP, X2
Nominal,
Noun, Verb
[2,3] [2,4] [2,5] [2,6]
Det NP NP
[3,4] [3,5] [3,6]
Nominal, Nominal
Noun
[4,5] [4,6]
Prep PP
[5,6]
PropNoun,
NP

VS.

| I | book the meal through I Singapore
[0,1] [0,2] [0,3] [0,4] [0,5] [0,6]
Pronoun, NP S S S
(1,2] [1,3] (1,4] (1,5] [1,6]
S, VP, VP, S, X2 VP, S, X2
Nomin al,
Noun, Verb
[2,3] [2,4] [2,5] [2,6]
Det NP NP
[3,4] [3,5] [3,6]
Nomina T, Nominal
Noun
[4,5] [4,6]
Prep PP
[5,6]
PropNoun,
NP

48

CYK Parsing Algorithm — Limitation

e Basic CYK algorithm only solves the membership problem
m Algorithm only checks if a sentence is a "member" of the language described by grammar

e \What we also want

m Finding all actual parse trees
(in case a sentence is valid; otherwise the result is empty)

m Identifying the best parse tree(s)
(which requires a definition for what we mean by "best")

=*» Good news: Only rather minor extension to base algorithm required

49

|I1-|.BC’[UI‘B AC’[IVI’[V (10 mins incl. break)

e Question: What do you think determines the "best" parse tree

m Post your RegEx to Canvas > Discussions
(individually or as a group; include all group members' names in the post)

m Optional: How could quantify/compute the best parse tree?

50

Outline

e Syntactic Parsing
Quick recap: RegEx

m Context-free grammars
m Structural Ambiguity

m Chomsky Normal Form

Lecture 9

CYK Parsing Algorithm

m Base membership algorithm

m Find all parse trees with backtracking
m Probabilistic parsing

m Evaluation of parsers

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

51

CYK — Get all Parse Trees (Derivations)

e Basic ldea: Keep track of backtrace
m Remember which 2 cells matched an existing production rule

|1 | book | the | flight | through | Singapore | Binary split: [0,1] / [1,6]
[0,1] [0,2] [0,3] [0,4] [0,5] [0,6] LHS m
Pronoun N @ — Pronoun S

[1,2] [1,3] [1,4] [1,5] [15
S, VP, S, VP, X2 S, @ X2 - Pronoun VP
Y — Pronoun X2
Noun, Verb - NP S
(2,3] (2,4] [2,5] (2,6] S NP VP
Det NP NP — NP X2
13,4] (8,5] (3,6]
Nominal, Nominal
Noun
[4,5] [4,6]
Prep PP
[5,6]
PropNoun,
NP

CYK — Get all Parse Trees (Derivations)

e Recall: Structural Ambiguity

m In general, different production rules might match

|1 | book | the | flight | through | Singapore Binary split: [1,2] / [2,6]
[0,1] [0,2] [0,3] [0,4] [0,5] [0,6] LHS m
— SNP

Pronoun, NP S S S
[1,2] [1,3] [1,4] [1,5] [1,6]

_ VP NP
s, VP, Sv @VP’ x2 Nominal NP

Nominal,

Noun,(Verb) i Noun NP

[2,3] [2,4] [2,5] [2,6] S, VP, X2 | Verb NP
Det NP ‘NP’
(3,4] [3,5] (3,6]

Nominal, Nominal Binary Split: [1 !4] / [4!6]

[4,5] 3§ — S PP

Prep PP
S,VP | VPPP
[5,6]
S, VP X2 PP
PropNoun,

NP

CYK — Get all Parse Trees (Pseudo Code)

function CKY-Parse(words, grammer) returns table, pointer

for j — from 1 to LENGTH(words) do
for all { A | A—»words[j] € grammar}
table[j-1, j] < table[j-1,j] U A
pointer{j-1, j, A] < pointer{j-1, j, A] U words[j]

for j — from j-2 down to 0 do }
for k—i+1 to j-1 do
for all { A| A—BC € grammar and B € tablel[i, k] and C € table[k, j] }
tableli, j] < table[i, j] U A
pointeri, j, A] < pointeri, j, A] U ((i, k, B), (k, j, C))

54

CYK — Get all Parse Trees (Python)

1 def cyk parse basic ptr(tokens, rules):

2 = len(tokens)

4 # Initialize dynamlc programming table + backtrace pointers

5 CYK = t(lambda: defaultdict(lambda: defaultdict(lambda: 0)))

6 : defaultdict(lambda : defaultdict(list)))

8 # Initialize parse: span of length 1

9 for s in range(n):

10 # Find all non-terminals that can generate the terminal

11 for A, rhs in rules:

12 if rhs == (tokens[s],):

13 CYK[s][s+1][A] = 1 it i

i [PTR{s1[s+11[Al . append(Tokensis]) |+ The only gddltlons to the base glgorlthm
15 (base algorithm = CYK for membership problem)
16 # Handle spans of length 2+ using dynamic programming

17 for length in range(2, n+l):

18 for start in range(®, n-length+1): # Loop over all

19 end = start + length # the possible

20 for split in range(start+l, end): # binary splits

21 # Check each production rule (ignore lexicon rules)

22 for A, (B, C) in [.r for r in rules if ten(r[l]) = 2]:
23 # 1s valid = 1 if B and C can generate left and right part
24 15 valid = CYK[start][split][B] * CYK[split][end][C]

25 # The same LHS needs to be able to generate the RHS only once
26 CYK[start][end][A] = np.max([is valid, CYK[start][end][A] 1)
27 L1

28 if is valid > @:
29 PTR[start][end][A].append(((start, split, B), (split, end, C)))

31 return CYK, PTR|

Parse Trees: CFG vs. CNF

e Converting a CFG into a CNF affects resulting parse trees

m CFG parse trees can be recovered from CNF parse trees
(easy for newly split n-ary rules; a bit more tricky for unary rules)

m Straightforward extension of CYK algorithm to support unary rules directly

(doesn't affect runtime complexity, but roughly doubles the required lines code)

Parse tree using original CFG Parse tree using CNF (converted from CFG)
S
S /\
/’\
NP VP N}P VP
| - /\
Pronoun Verb NP PP I X2 PP
I book Det Nominal Prep NP Verb NP Prep NP
the Nolun through ProPeeroun book Det Nominal through Singapore
flight Singapore ‘ ‘

the flight

56

CYK — Parse Trees

e Parse tree for example

"I book the flight through Singapore”

e Observation
m Multiple valid parses

m Which is the best one?

NP VP
/\
l Verb NP
/\
bo‘ok Det Nominal
tk‘le Nominal PP
/\
fli‘ght Prep NP
through Singipore
S
/\
NP VP
/\
I’ X2 PP
/\
Verb NP Prep NP
/\
bo‘ok Det Nominal thrlugh Singlpore
t1’|1e flight
S
/\
NP VP
/\
I’ VP PP
T~ T
Verb NP Prep NP
/\
bo‘ok Det Nominal thrlugh Singa|1pore

the flight 57

Outline

e Syntactic Parsing
Quick recap: RegEx

m Context-free grammars
m Structural Ambiguity

m Chomsky Normal Form

Lecture 9

CYK Parsing Algorithm

m Base membership algorithm

m Find all parse trees with backtracking
m Probabilistic parsing

m Evaluation of parsers

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

58

Statistical Parsing

e Resolve structural ambiguity by choosing the most probable parse
m Best parse = parse with the highest probability

m Question: Where to get such probabilities from?

=*» Probabilistic Context-Free Grammar (PCFG)

m Same as CFG, but each rule is associated with a probability

m Probabilities are learned from an annotated dataset

n n
Given a parse tree T for a sentence S comprised of rules: P(T, S) = H P(A— a) = H P(alA)

1 7

59

CFG — Formal Definition

e ACFGisad4tuple (N,X,R,S)

N — set of non-terminal symbols
>, — set of terminal symbols

R — set of rules

Allowed format for all rules

A—alplwith Ae N ae (NUY)
p = P(alA)

S — start symbol

Example
N = {NP, VP, Det, Noun, Verb}

Y ={a, the, man, meal, flight, saw, booked}

S — NP VP [0.4]
NP — Det Noun [0.5]
VP = Verb NP [0.2]
Det — a | the [0.6]

60

Example CFG =» Example PCFG

S — NP VP [0.§]
d =1 S — Aux NP VP [0.1]
S — VP [0.1]
NP — Pronoun [0.2]
Z =1 NP — ProperNoun [0.2]

NP — Det Nominal [0.6]
Nominal — Noun [0.3]
Z =1 Nominal — Nominal Noun [0.2]
Nominal — Nominal PP [0.5]
e VP — Verb [0.2]
VP — Verb NP [0.4]
d o =1x VP — Verb NP PP [0.1]
VP — Verb PP [0.1]
L VP VPPP[0.2
PP — Prep NP [1.0]

Det — the [0.4] | a [0.3] | that [0.2] | this [0.1]
Noun — book [0.2] | flight [0.2] | meal [0.3] | money [0.3]

Verb — book [0.4] | include [0.3] | prefer [0.3]
Pronoun — I [0.4] | she [0.2] | he [0.2] | me [0.2]
ProperNoun — Singapore [0.4] | Frank furt [0.4] | STA [0.2]

Aux — do [0.5] | does [0.2] | did [0.3]

Prep — from [0.2] | to [0.4] | on [0.2] | near [0.1] | through [0.1]

&

J

N

E =] for all right-hand sides

Requirement for valid probabilities:

Y P(A—a)=> Plad) =1

61

PCFG — Probability of a Parse Tree

e Probability of parse tree = product of probabilities of all rules
m In practice, sum up log probabilities to avoid arithmetic underflow

S 0.8
//—\
NP 0.2 VP 04
| _— T
Pronoun Verb 0.4 NP 0.6
| 0.4 | —
I book Det 0.4 Nominal 0.6
| — T
the Nominal 0.3 PP 1.0
| — T
Noun 0.2 Prep 0.1 NP 0.2
| l |
flight through ProperNoun (.4

|
Singapore
n

P(T,S) =[] P(A —) = 0.00000071

?

S 0.8
///\
NP 0.2 VP (0.2
| -
Pronoun VP 0.4 PP 1.0
| 0.4 T —
I Verb 0.4 NP 0.6 Prep 0.1 NP 0.2
| — T~ | l
book Det Nominal through ProperNoun 0.4
| 0.4 | 0.3 |
the Noun 0.2 Singapore
[
flight
n

P(T,S) = [P(A — @) = 0.00000024

i

62

PCFG — Calculating the Probability of a Rule

e Calculating P(A — «a) using Maximum Likelihood Estimation
m Requires annotated dataset of parse trees

Number of occurrences of
rule P(A — «) in the dataset

/

Count(A — «a)

P(A— a)=Pla|A) = Count(A)

Number of occurrences of rules
in the dataset with A as the LHS

63

PCFG — Converting to CNF

(1) Dividing n-ary rules by introducing new non-terminals

S — NP VP [0.§] S — NP VP [0.§]
S — Aux NP VP [0.1] :> S — X1 VP [0.1]
X1 — Aux NP [1.0]

(2) Recursive removal of unary rules S NP VP [0.8

S — X1 VP [0.1]
S — NP VP [0.§] X1 — Aux NP [1.0]

S — Aux NP VP [0.1] :> S — Verb NP [0.04]

S — VP [0.1] S — X2 PP [0.01]
S — Verb PP [0.01]

S — VP PP [0.02]

How to compute
these probabilities?

S — book [0.008] | include [0.006] | prefer [0.006]

64

PCFG — Converting to CNF

e Multiply probabilities along the paths

S VP

Verb NP
0.4
% X2 PP
\‘“ Verb PP
"2 VP PP
02 0.4, book
Verb 93 include
N‘ prefer

0.04

0.01

0.01

0.02
0.008
0.006

0.006

-y =01

65

PCFG — Converting to CNF

S — NP VP [0.§] Det — the [0.4] | a [0.3]| that [0.2] | this [0.1]
S — X1 VP [0.1] Noun — book [0.2] | flight [0.2] | meal [0.3] | money [0.3]
X1 — Aux NP [1.0] Verb — book [0.4] | include [0.3] | prefer [0.3]
S — Verb NP [0.04] Pronoun — [[0.4] | she [0.2] | he [0.2] | me [0.2]
S — X2 PP [0.01] PropNoun — Singapore [0.4] | Frank furt [0.4] | STA [0.2]
S — Verb PP [0.01] Aux — do [0.5] | does [0.2] | did [0.3]
S — VP PP [0.02] Prep — from [0.2] | to [0.4] | on [0.2] | near [0.1] | through [0.1]
NP — Det Nominal [0.6] S — book [0.008] | include [0.006] | prefer [0.006]
Nominal — Nominal Noun [0.2] VP — book [0.08] | include [0.06] | prefer [0.06]
Nominal — Nominal PP [0.5] NP — I[0.08] | she [0.04] | he [0.04]] me [0.04]
VP — Verb NP [0.2] NP — Singapore [0.08] | Frank furt [0.08] | STA [0.04]
VP — X2 PP [0.1] Nominal — book [0.06] | flight [0.06] | meal [0.09] | money [0.09]

X2 — Verb NP [1.0]
VP — Verb PP [0.1]
VP — VP PP [0.2]

PP — Prep NP [1.0]

CYK — Get Best Parse Tree (Pseudo Code)

function CKY-Parse(words, grammer, probs) returns table, pointer

for j — from 1 to LENGTH(words) do
for all { A | A—»words[j] € grammar}
table[j-1, j, A] < probs[A—words[j]]
pointer{j-1, j, A] < pointer{j-1, j, A] U words[j]

for j — from j-2 down to 0 do
for k—i+1 to j-1 do
for all { A| A—BC € grammar and B € tablel[i, k] and C € table[k, j] }
p < tableli, k, B] * table[k, j, C] * probs|[A—BC]
if p > tableli, j, A] do
tableli, j, Al < p
pointeri, j, A] < pointeri, j, A] U ((i, k, B), (k, j, C))

67

CYK — Get Best Parse Tree (Python)

1 def cyk parse probabilistic ptr(tokens, rules,

2 n = len(tokens)

4 # Initialize dynamic programming table

5 CYK = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0)))
6 PTR = defaultdict(lambda : defaultdict(lambda : defaultdict(1i3¥)))

8 # Initialize parse: span of length 1

9 for s in range(n):

10 # Find all non-terminals that can generate the terminal

11 for A, rhs in rules:

12 if rhs == (tokens[sl.):

13 ._[_].[_].[_]ﬁ.(_k_[_].)_l“"lsl [s+1][A] = probs[A][token[s]] [+ The only changes to the algorithm
14 PTR[s][s+1][A].append(tokens|s

16 # Handle spans of length 2+ using dynamic programming

17 for 1 in range(2, n+l):

18 for start in range(0, n-1+1):

19 end = start + 1

20 for split in range(start+l, end):

21 # Check each production rule (ignore lexicon rules)

22 for A,: (B; €C) in [.r for r im rules Iif len(r[l]) == 2]:

23 # Calculate probability of reaching the cell with the current rule
24 p = CYK[start][split][B] * CYK[split][end][C] * probs[A][(B,C)]

25 # If the probability is larger then the current one => update!

26 if p > CYK[start][end][A]:

27 CYK[start][end][A] = p

28 PTR[start][end] [A].append(((start, split, B), (split, end, C)))
30 return CYK, PTR

Outline

e Syntactic Parsing
Quick recap: RegEx

m Context-free grammars
m Structural Ambiguity

m Chomsky Normal Form

Lecture 9

CYK Parsing Algorithm

m Base membership algorithm

m Find all parse trees with backtracking
m Probabilistic parsing

m Evaluation of parsers

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

69

Note: This is not the only way to do it.

Evaluation of Parse Trees

e Important: best parse # correct parse
m Best parse = parse with the highest probability

m Correct parse = parse that matches the gold-standard solution

e How evaluate parse trees?
m Represent each parse tree as a set of tuples {{l1,71, j1), {({2,12, 72), ..., {{n, in, Jn) }

lk is the non-terminal labeling the k™" phrase
1. is the index of the first word in the k™ word in the phrase

Jji. is the index of the last word in the k' word in the phrase

=» Use representations of computed parse and gold standard parse to estimate precision, recall and 1

70

Evaluation of Parse Trees — Example

Gald-standard (correct) parse tree Computed "best" parse tree
N s
Pror%oun Velrb/\NP NlP //\LP\
//\
I book DTat /w ProToun /VP\ /PP\
the Non|1inal /PP\ . Velrb /NP\ Prlep N'P
Noun Prep NP book Dlet Norrliinal through Propeeroun
flilght thrcLugh Prope‘rNoun the Nolun Singapore
Tuples only present in correct tree Tuples resent in both trees Tuples only present in computed tree
(NP, 3,6) (NP,1,1) (Pronoun, 1,1) (VP,2,6) (Verb, 2,2) (VP,2,4)
(Nominal, 4, 6) (Det, 3, 3) (Nominal, 4,4) (Noun, 4,4) (Prep, 5, 5) (NP, 3,4)

(PP,5,6) (NP, 6,6) (ProperNoun, 6, 6)

71

Evaluation of Parse Trees — Example

Tuples only present in correct tree Tuples resent in both trees Tuples only present in computed tree
(NP, 3,6) (NP,1,1) (Pronoun, 1,1) (VP,2,6) (Verb, 2,2) (VP,2,4)
(Nominal, 4, 6) (Det, 3,3) (Nominal, 4,4) (Noun, 4, 4) (Prep, 5, 5) (NP, 3,4)

(PP,5,6) (NP, 6,6) (ProperNoun, 6, 6)

TP 11

= = 0.85
TP+ FP 11+2

Precision =
TP = #tuples in both trees

TP 11
TP+ FN 1142

Recall = — 085 FP = #tuples only in computed tree

FN = #tuples only in correct tree

2. Precision - Recall
fl = = (.85
Precision + Recall

72

Outline

e Syntactic Parsing
m Quick recap: RegEx
m Context-free grammars
m Structural Ambiguity
m Chomsky Normal Form

Lecture 9

CYK Parsing Algorithm

m Base membership algorithm

m Find all parse trees with backtracking
m Probabilistic parsing

m Evaluation of parsers

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

73

Summary

e Recursive nature of natural language
m Natural language allows for nested structure

m Basic building block: constituents

m Most common way to capture constituency =» context-free grammars (CFGs)

e Syntactic parsing

m Membership: check if a sentence can be generated by a grammar

m |dentification of all possible parse trees for a sentence CYK Parsing Algorithm

m |dentification of best parse tree for a sentence =» Probabilistic CFGs

74

Pre-Lecture Activity for Next Week

e Assigned Task
m Read the Wired article "8 Google Employees

Invented Modern Al. Here'’s the Inside Story”
(you might need to use your browser's private/incognito mode)

m Apply your own (self-)attention to the article. Quote
a sentence of the article you think most or least
strikes your attention. Tell us why!

Side notes:
e This task is meant as a warm-up to provide some context for the next lecture

e No worries if you get lost; we will talk about this in the next lecture
e You can just copy-&-paste others' answers but his won't help you learn better

BY STEVEN LEVY BACKCHANNEL MAR 28, 2824 65:88 AM

8 Google Employees
Invented Modern Al.

Here’s the Inside Story

They met by chance, got hooked on an idea, and
wrote the “Transformers” paper—the most
consequential tech breakthrough in recent history.

75

https://www.wired.com/story/eight-google-employees-invented-modern-ai-transformers-paper/
https://www.wired.com/story/eight-google-employees-invented-modern-ai-transformers-paper/

Solutions to Quick Quizzes

e Slide 6: A

m Set of words is not unbound =¥ always possible to find an FSA/RegEx describing this language
e Slide 22: D

m All other options easily pass the one or more constituency tests

m All other options arguably read/sound like self-contained phrases
e Slide 16: B

m Arule cannot have 2 non-terminals on the left-hand side (this would imply a context)

m Arule cannot have a terminal on the left-hand side

e Slide 25

m Arules that are not binary, i.e., with more or less than 2 (non-)terminals on the right-hand side

76

Solutions to Quick Quizzes

o Slide 34

m It means that "book" is a grammatically correct sentence, which it is as in imparative: "Book!"
e Slide 36
m The sentence will be grammatically correct if there is an "S" in the top-right corner

m There can be other non-terminals as well, as long there is an "S"

77

