
CS4248: Natural Language Processing

Lecture 9 — Trees

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 9

Recap of Week 08

2

Student Learning Outcomes

Announcements
Assignments

■ Assignment 1: Graders are examining your requests.
■ Assignment 1: We are also processing our requests on possible academic dishonesty.
■ Assignment 3 out: Theory and Practice, 3 problems.

Projects

■ Intermediate Updates to be disseminated soon. 5% of your total grade, uniformly distributed.
■ First TEAMMATES intra-peer evaluation has been completed. Please check your own results.
■ Min and Chris will be announcing a sign-up sheet for teams to optionally consult us on their project.
■ Teams can be nominated or self-nominate for STePS (Week 13 Wed) for poster styled presentation

instead.

3

https://canvas.nus.edu.sg/files/3864973/download?download_frd=1
https://teammatesv4.appspot.com/web/instructor/sessions/report?courseid=CS4248-T2320&fsname=W07-08%20Interim%20Feedback

Outline

4

● Syntactic Parsing
■ Quick recap: RegEx
■ Context-free grammars
■ Structural Ambiguity
■ Chomsky Normal Form

● CYK Parsing Algorithm
■ Base membership algorithm
■ Find all parse trees with backtracking
■ Probabilistic parsing
■ Evaluation of parser

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 9

Throwback — Regular Expression

5

● Equivalence
■ Regular Expressions describe Regular Languages

(most restricted types of languages w.r.t Chomsky Hierarchy)

■ Regular Language = language accepted by a FSA
Chomsky Hierarchy

(Source: Wikipedia)

{lol, loool, lolol, looolol, …}

l(o+l)+

Regular Language

Regular Expression

q0 q1 q2 q3
l o

o

o

l

Example: FSA that accepts the Regular Language
described by the Regular Expression l(o+l)+

https://en.wikipedia.org/wiki/Chomsky_hierarchy

󰝋🏃󰝊 Quick Quiz

6

Can you build an FSA / RegEx that
accepts the language below? No

Yes

RegEx? What’s a
RegEx?

Undecidable

A
B
C
D

In-Lecture Activity (2 mins)

Regular Expressions — Limitations
● Not all languages can be described using RegEx

■ Example:

7

➜ Natural Language is not a Regular Language
■ Natural language allows for nested structures (center embeddings)

The food was delicious

The food Alice cooked was delicious

The food Alice the sister of Bob cooked was delicious

Syntax & Constituency
● Important questions

■ How are words combined to form phrases?

■ How are phrases combined to form longer phrases?

■ How are phrases are combined to form sentences?

● Important concept: constituency = phrase structure
■ Constituent = group of words that behave as a single unit

8

How meaning is mapped onto
what language structures?

Constituents
● Constituent — Definition

■ Group of words that behaves as a single unit or phrase
(by default: individual words are constituents, but there are exceptions)

■ Sentences can be described as a hierarchical structure of constituents (in a bit: parse trees)

● Question: How do we know a group of words forms a constituent?
■ Handwavy answer: Group of words that “make sense” on its own

■ Formal answer: Constituency Tests

9

“She heard a loud shot from the bank during the time of the robbery.”

a loud shot

a loud shot from the

a loud shot from the bank

Constituency Tests (some examples)

● Topicalization
■ Only a constituent can be moved to different locations in a sentence

● Proform substitution
■ Only a constituent can be substituted with a proform like it, that, them, then, there, etc.

● Fragment Answers
■ Only a constituent can answer a question while retaining the meaning of the original sentence.

10

“Alice was hit by the green car.” — Q: “What hit Alice?” ➜ “The green car.”

“They met at 8 pm for dinner.” — “They met for dinner at 8 pm.” — “At 8 pm, they met for dinner.”

“Chris went back to Germany.” ➜ “Chris went there.”

󰝋🏃󰝊 Quick Quiz

11

Which is not a constituent
in the sentence below? learned about

syntactic parsing

All students

learned about

this week

A
B
C
D

“All students learned about
syntactic parsing this week”

In-Lecture Activity (2 mins)

Outline

12

● Syntactic Parsing
■ Quick recap: RegEx
■ Context-free grammars
■ Structural Ambiguity
■ Chomsky Normal Form

● CYK Parsing Algorithm
■ Base membership algorithm
■ Find all parse trees with backtracking
■ Probabilistic parsing
■ Evaluation of parser

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 9

Context-Free Grammars (CFGs)
● Context-Free Grammars

■ Most common way to capture constituency and ordering ➜ good fit for natural language!
(in fact, context-free grammars were first used to study human languages to describe the structure of sentences)

■ Define what meaningful constituents are and how a constituent is formed out of other constituents

■ More powerful than RegExs as they can express recursive structure
(in contrast, context free grammars can describe regular languages)

● Example

13
set of rules or productions

Non-terminal symbols
■ Symbols that can be replaced according to rules
■ For natural language grammars: phrase names, part of speech

Terminal symbols
■ May be the output of a rule; cannot be changed/replaced further
■ For natural language grammars: words/tokens

special start symbol

Context-Free Grammars (CFGs)
● Application of rules — example

14

Visualization as Parse Tree

Derivation: sequence of rules/productions used to generate a string of words

CFG — Formal Definition

15

● A CFG is a 4-tuple

■ — set of non-terminal symbols

■ — set of terminal symbols

■ — set of rules

■ — start symbol

Allowed format for all rules

with ,

Example

󰝋🏃󰝊 Quick Quiz

16

✏ What part of this specification
makes this context-free?

A
B
C
D

In-Lecture Activity (2 mins)

N

● A CFG is a 4-tuple

■ set of non-terminal symbols N

■ set of terminal symbols

■ set of rules

■ start symbol S

CFG — Running Example

17

Important requirements to make it a CFG
● Only single non terminals on the right-hand side

➜ Application of a rule does not depend on context

󰝋🏃󰝊 Quick Quiz

18

How many issues make the
grammar below not a CFG?

2

1

4

3

A
B
C
D

In-Lecture Activity (2 mins)

Outline

19

● Syntactic Parsing
■ Quick recap: RegEx
■ Context-free grammars
■ Structural Ambiguity
■ Chomsky Normal Form

● CYK Parsing Algorithm
■ Base membership algorithm
■ Find all parse trees with backtracking
■ Probabilistic parsing
■ Evaluation of parser

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 9

Ambiguity

20

● Ambiguity of Natural Language
■ Common: multiple ways

to interpret a sentence

■ Different interpretation ➜ different meaning

➜ Structural Ambiguity
● A grammar can assign more

than one parse to a sentence

● Example (using our toy grammar):

“I book the flight through Singapore”

󰤇🤷󰤈 Structural Ambiguity
● Two common types of Structural Ambiguity

21

(1) Attachment Ambiguity

(2) Coordination Ambiguity

● A particular constituent can be attached to
the parse tree at more than one place

● Phrases can be conjoined by conjunction like “and”, “or”,
“but”, “because”, “if”, etc.

● Different types of conjunctions
(coordinating conjunctions, correlative conjunctions, correlative conjunctions)

In-Lecture Activity (2 mins)

󰝋🏃󰝊 Which parse is correct?

22

“I book the flight through Singapore”

A B

󰤇󰤈🤷 Attachment Ambiguity

23

“I book the flight through Singapore”

“through Singapore” attached to
noun phrase related to “flight”

“through Singapore” attached to
verb phrase related to “book”
(like booking a flight through an agent)

󰤈🤷󰤇 Coordination Ambiguity

24

“SIA has the best meals and entertainment”

“best” refers to both the meals
and the entertainment

“best” refers to only the meals
but not the entertainment

Note: This example used a different grammar since our toy grammar does not support conjunctions.

Pre-Lecture Activity for Last Week

Pre-Lecture Activity for Last Week

25

● Assigned Task
■ Watch the 9-minute YouTube video linked below
■ Take an ambiguous news headline and explain one strategy mentioned in the video
■ Post a 1-2 sentence answer to the following questions in your Tutorial Group’s discussion

Side notes:
● This task is meant as a warm-up to provide some context for the next lecture
● No worries if you get lost; we will talk about this in the next lecture
● You can just copy-&-paste others' answers but this won't help you learn better

The Ling Space:
"How Do We Interpret Sentences? Parsing Strategies"

http://www.fun-with-words.com/ambiguous_headlines.html
https://www.youtube.com/watch?v=2A-FDN7-gyo

Sisters reunited after 18 years at checkout counter

26

Graphics courtesy Dall.E (run 22 Mar 2024)

Pre-Lecture Activity for Next Week

Queen Mary getting her bottom scraped

27

Graphics courtesy Dall.E (Run 22 Mar 2024)

Pre-Lecture Activity for Next Week

Summary So Far…
● Parsing as a 2-part task

28

(1) Syntactic Parsing

(2) Syntactic Disambiguation

● Extract all possible parses for a sentence

● Typically requires a grammar transformation step
(“binarization” of grammar to ensure efficient parsing)

● Score all parses and return the best parse

● Scores commonly expressed as probability

Outline

29

● Syntactic Parsing
■ Quick recap: RegEx
■ Context-free grammars
■ Structural Ambiguity
■ Chomsky Normal Form

● CYK Parsing Algorithm
■ Base membership algorithm
■ Find all parse trees with backtracking
■ Probabilistic parsing
■ Evaluation of parser

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 9

with ,

Grammar Transformation (for CFGs)

● Important requirement: binarized rules
■ No more than 2 non-terminals on the right-hand side of rules

■ Crucial for a cubic time parsing of CFGs

30

➜ Common transformation: Chomsky Normal Form
■ Restrictions on rules compared to general CFG

Allowed format for all rules

 is either 1 terminal OR 2 non-terminals

In-Lecture Activity (2 mins)

󰝋🏃󰝊 A Great Way to Fly

31

with ,

Allowed format for all rules

 is either 1 terminal OR 2 non-terminals

Quick Quiz:

● Which rules do not conform to the Chomsky Normal Form?

● How can we transform the grammar to fix this?

Chomsky Normal Form (CNF)
● Two basic transformation steps

32

(1) Recursive removal of unary rules (and empty rules)

(2) Dividing n-ary rules by introducing new non-terminals
(n-ary rule = rule with n > 2 non-terminal on the right-hand side)

➜

➜

Toy Grammar in Chomsky Normal Form CNF

33

with ,

Allowed format for all rules

 is either 1 terminal OR 2 non-terminals ✓

CFG to CNF — Summary
● Transformation of a CFG to a CNF

■ Every CFG can be transformed into a weakly-equivalent CNF

34

➜ Weak equivalence
■ Two grammars generate the same set of sentences (identical expressiveness)

■ The derivations generating the same sentences may differ
(recall that the CNF may introduce additional non-terminals)

(Strong equivalence: identical expressiveness + identical derivations)

Break

CS4248 Natural Language
Processing

35

Outline
● Syntactic Parsing

■ Quick recap: RegEx
■ Context-free grammars
■ Structural Ambiguity
■ Chomsky Normal Form

● CYK Parsing Algorithm
■ Base membership algorithm
■ Find all parse trees with backtracking
■ Probabilistic parsing
■ Evaluation of parser

36C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 9

CYK Parsing Algorithm
● CYK Parsing Algorithm — basic intuition

■ Given is a context-free grammar in CNF

■ Assume we have a sentence comprising words

37

can generate
There exists a rule in with

■ can generate

■ can generate

There can be multiple rules for different ,
but at least one rule for at least one .

Note: Appreciate how the “binarization” of rules helps here!

binary
split

There exists a rule so that and
can generate a binary split of

CYK Parsing Algorithm

38

➜ Recursive nature: can generate

…

➜ CYK Parsing Algorithm: Solve problem using Dynamic Programming
■ Find all possible parses for all sequences of size k for k from 1 to n

(until we reach individual words; then check the lexicon rules)

CYK Parsing Algorithm
● Dynamic Programming approach

■ Completing the parse table in a bottom-up manner
(very similar idea as we have seen for calculating the Minimum Edit Distance)

■ Can to handle redundancy when computing the parse trees

● Different ways to visualize parse table
■ Completely identical, just that the indexing of table cells differs

39

CYK — Parse Table

40

CYK parse table
● table

(= # words in sentence)

● Each cell represents all the
possible parses for span [i, j]

● Algorithm: fill table starting
with cells for spans of length
L = 1 to cells for spans of
increasing lengths

[1,4] = all possible parses for
 span “book the flight”

L Cells
1 [0,1], [1,2], [2,3], [3,4], [4,5], [5,6]
2 [0,2], [1,3], [2,4], [3,5], [4,6]
3 [0,3], [1,4], [2,5], [3,6]
4 [0,4], [1,5], [2,6]
5 [0,5], [1,6]
6 [0,6]

In-Lecture Activity (2 mins)

󰝋🏃󰝊 Fill in the Lexicon

41

flight

book

through

A

B

C

D Singapore

One of the cells has a pretty
interesting value. Which
one?

CYK — Walkthrough

42

Cells for spans of length L = 1
➜ only need to check lexicon

Fill each cell with the non-terminals that
can generate the corresponding word

Quick quiz: What does it mean that cell
[1,2] contains start symbol S?

CYK — Walkthrough

43

Cells for spans of length L > 1
➜ Check for each binary split if there is a
 production rule that can generate split

Example: Cell [0,2]
➜ only 1 binary split: [0,1] / [1,2]

Check each possible pair of non-terminals
of binary split is the RHS of an existing
production rule ➜ Yes, add LHS to cell

LHS RHS
— Pronoun S
— Pronoun VP
— Pronoun Nominal
— Pronoun Noun
— Pronoun Verb
— NP S
S NP VP
— NP Nominal
— NP Noun
— NP Verb

Only this rule exists
in our grammar

CYK — Walkthrough

44

Example: Cell [1,4]
● binary split: [1,2] / [2,4]
● binary split: [1,3] / [3,4]

LHS RHS
— S NP
— VP NP
— Nominal NP
— Noun NP

S, VP, X2 Verb NP

LHS RHS

3 existing rules with
the same RHS

Binary split: [1,2] / [2,4]

Binary split: [1,3] / [3,4]

Empty because [1,3] is empty

Quick quiz: Can you already guess how the
parse table indicates that a sentence is valid?

CYK — Walkthrough

45

Example: Cell [2,6]
● binary split: [2,3] / [3,6]
● binary split: [2,4] / [4,6]
● binary split: [2,5] / [5,6]

LHS RHS
NP Det Nominal

Binary split: [2,3] / [3,6]

LHS RHS
— NP PP

Binary split: [2,4] / [4,6]

LHS RHS

Binary split: [2,5] / [5,6]

󰝋🏃󰝊 CYK — TraceTogether

46

Example: Cell [1,6]
● binary split: [1,2] / [2,6]
● binary split: [1,3] / [3,6]
● binary split: [1,4] / [4,6]
● binary split: [1,5] / [5,6]

In-Lecture Activity (2 mins)

CYK — Walkthrough (Done)

47

Example: Cell [1,6]
● binary split: [1,2] / [2,6]
● binary split: [1,3] / [3,6] (empty!)
● binary split: [1,4] / [4,6]
● binary split: [1,5] / [5,6] (empty!)

LHS RHS
— S NP
— VP NP
— Nominal NP
— Noun NP

S, VP, X2 Verb NP

Binary split: [1,2] / [2,6]

LHS RHS
— S PP

S, VP VP PP
S, VP X2 PP

Binary split: [1,4] / [4,6]

CYK — Walkthrough

48

Example: Cell [0,6]
● binary split: [0,1] / [1,6]
● binary split: [0,2] / [2,6]
● binary split: [0,3] / [3,6] (empty!)
● binary split: [0,4] / [4,6]
● binary split: [0,5] / [5,6] (empty!)

LHS RHS
— Pronoun S
— Pronoun VP
— Pronoun X2
— NP S
S NP VP
— NP X2

Binary split: [0,1] / [1,6]

LHS RHS
— S NP

Binary split: [0,2] / [2,6]

LHS RHS
— S PP

Binary split: [0,4] / [4,6]

CYK — Walkthrough

49

Our grammar can generate this sentence
since the start symbol S is in [0,6]

CYK Parsing Algorithm — Pseudo Code

50

function CKY-Parse(words, grammar) returns table

for j ← from 1 to LENGTH(words) do
for all { A | A→words[j] ∊ grammar }

table[j-1, j] ← table[j-1, j] ∪ A

for j ← from j-2 down to 0 do
for k←i+1 to j-1 do

for all { A | A→BC ∊ grammar and B ∊ table[i, k] and C ∊ table[k, j] }
table[i, j] ← table[i, j] ∪ A

Base case: For each terminal (i.e., word), find
all terminals that can generate this terminal

Loop over all possible binary splits of spans of size 2, and increase until sentence length

If there is a rule (or more) that can generate the current
binary split, add the rule’s LHS to the cell of the current
span

CYK Parsing Algorithm — Basic Python Implementation

51

CYK — Example: Invalid Parse

52

CYK — Syntax vs. Semantic
● Syntactic parsing does not consider semantics

■ Any constituent can be replaced with another constituent of the same type

■ Example below: A noun can be replaced with any other noun

53

vs.

CYK Parsing Algorithm — Limitation
● Basic CYK algorithm only solves the membership problem

■ Algorithm only checks if a sentence is a “member” of the language described by the grammar

● What we also want
■ Finding all actual parse trees

(in case a sentence is valid; otherwise the result is empty)

■ Identifying the best parse tree(s)
(which requires a definition for what we mean by “best”)

54

➜ Good news: Only rather minor extension to base algorithm required

Outline

55

● Syntactic Parsing
■ Quick recap: RegEx
■ Context-free grammars
■ Structural Ambiguity
■ Chomsky Normal Form

● CYK Parsing Algorithm
■ Base membership algorithm
■ Find all parse trees with backtracking
■ Probabilistic parsing
■ Evaluation of parser

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 9

CYK — Get all Parse Trees (Derivations)
● Basic Idea: Keep track of backtrace

■ Remember which 2 cells matched an existing production rule

56

LHS RHS
— Pronoun S
— Pronoun VP
— Pronoun X2
— NP S
S NP VP
— NP X2

Binary split: [0,1] / [1,6]

CYK — Get all Parse Trees (Derivations)
● Recall: Structural Ambiguity

■ In general, different production rules might match

57

LHS RHS
— S NP
— VP NP
— Nominal NP
— Noun NP

S, VP, X2 Verb NP

Binary split: [1,2] / [2,6]

LHS RHS
— S PP

S, VP VP PP
S, VP X2 PP

Binary split: [1,4] / [4,6]

CYK — Get all Parse Trees (Pseudo Code)

58

function CKY-Parse(words, grammer) returns table, pointer

for j ← from 1 to LENGTH(words) do
for all { A | A→words[j] ∊ grammar }

table[j-1, j] ← table[j-1, j] ∪ A
pointer[j-1, j, A] ← pointer[j-1, j, A] ∪ words[j]

for j ← from j-2 down to 0 do
for k←i+1 to j-1 do

for all { A | A→BC ∊ grammar and B ∊ table[i, k] and C ∊ table[k, j] }
table[i, j] ← table[i, j] ∪ A
pointer[i, j, A] ← pointer[i, j, A] ∪ ((i, k, B), (k, j, C))

CYK — Get all Parse Trees (Python)

59

The only additions to the base algorithm
(base algorithm = CYK for membership problem)

Parse Trees: CFG vs. CNF
● Converting a CFG into a CNF affects resulting parse trees

■ CFG parse trees can be recovered from CNF parse trees
(easy for newly split n-ary rules; a bit more tricky for unary rules)

■ Straightforward extension of CYK algorithm to support unary rules directly
(doesn't affect runtime complexity, but roughly doubles the required lines code)

60

Parse tree using original CFG Parse tree using CNF (converted from CFG)

CYK — Parse Trees

61

● Parse tree for example

● Observation
■ Multiple valid parses

■ Which is the best one?

“I book the flight through Singapore”

● Question:
🤔 So how would you find the best parse?

🧐 Propose a solution.

● Post your answer to Canvas > Discussions > [In-Lecture Interaction] L1
(Help like other classmate’s responses too! 👍)

󰝋🏃󰝊 Looking for a few good the best parses

62

In-Lecture Activity (5 mins)

Outline

63

● Syntactic Parsing
■ Quick recap: RegEx
■ Context-free grammars
■ Structural Ambiguity
■ Chomsky Normal Form

● CYK Parsing Algorithm
■ Base membership algorithm
■ Find all parse trees with backtracking
■ Probabilistic parsing
■ Evaluation of parser

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 9

Statistical Parsing
● Resolve structural ambiguity by choosing the most probable parse

■ Best parse = parse with the highest probability

■ Question: Where to get such probabilities from?

64

➜ Probabilistic Context-Free Grammar (PCFG)
■ Same as CFG, but each rule is associated with a probability

■ Probabilities are learned from an annotated dataset

Given a parse tree T for a sentence S comprised of rules:

● A CFG is a 4 tuple

■ — set of non-terminal symbols

■ — set of terminal symbols

■ — set of rules

■ — start symbol

 with ,

65

CFG — Formal Definition

Allowed format for all rules

Example

Example CFG ➜ Example PCFG

66

for all right-hand sides

Requirement for valid probabilities:

PCFG — Probability of a Parse Tree

67

0.8

0.40.2

0.4 0.6

0.60.4

1.00.3

0.4

0.2 0.1 0.2

0.4

0.8

0.2

0.4
1.0

0.2

0.4

0.1

0.2
0.30.4

0.6

0.4

0.4

0.2

● Probability of parse tree = product of probabilities of all rules
■ In practice, sum up log probabilities to avoid arithmetic underflow

PCFG — Calculating the Probability of a Rule
● Calculating using Maximum Likelihood Estimation

■ Requires annotated dataset of parse trees

68

Number of occurrences of
rule in the dataset

Number of occurrences of rules
in the dataset with as the LHS

PCFG — Converting to CNF

69

(1) Dividing n-ary rules by introducing new non-terminals

(2) Recursive removal of unary rules

How to compute
these probabilities?

PCFG — Converting to CNF
● Multiply probabilities along the paths

70

0.1

0.4

0.1

0.1

0.2

0.2
0.4

0.3

0.3

0.04

0.01

0.01

0.02

0.008

0.006

0.006

PCFG — Converting to CNF

71
pen & paper calculations…I hope the numbers add up :)

CYK — Get Best Parse Tree (Pseudo Code)

72

function CKY-Parse(words, grammar, probs) returns table, pointer

for j ← from 1 to LENGTH(words) do
for all { A | A→words[j] ∊ grammar }

table[j-1, j, A] ← probs[A→words[j]]
pointer[j-1, j, A] ← pointer[j-1, j, A] ∪ words[j]

for j ← from j-2 down to 0 do
for k←i+1 to j-1 do

for all { A | A→BC ∊ grammar and B ∊ table[i, k] and C ∊ table[k, j] }
p ← table[i, k, B] * table[k, j, C] * probs[A→BC]
if p > table[i, j, A] do

table[i, j, A] ← p
pointer[i, j, A] ← pointer[i, j, A] ∪ ((i, k, B), (k, j, C))

CYK — Get Best Parse Tree (Python)

73

The only changes to the algorithm

Outline

74

● Syntactic Parsing
■ Quick recap: RegEx
■ Context-free grammars
■ Structural Ambiguity
■ Chomsky Normal Form

● CYK Parsing Algorithm
■ Base membership algorithm
■ Find all parse trees with backtracking
■ Probabilistic parsing
■ Evaluation of parser

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 9

Evaluation of Parse Trees
● Important: best parse ⇏ correct parse

■ Best parse = parse with the highest probability

■ Correct parse = parse that matches the gold-standard solution

● How evaluate parse trees?
■ Represent each parse tree as a set of tuples

75

is the non-terminal labeling the kth phrase

is the index of the first word in the kth word in the phrase

is the index of the last word in the kth word in the phrase

Note: This is not the only way to do it.

➜ Use representations of computed parse and gold standard parse to estimate precision, recall and F1

Evaluation of Parse Trees — Example

76

Gold-standard (correct) parse tree Computed “best” parse tree

Tuples only present in computed treeTuples resent in both treesTuples only present in correct tree

Evaluation of Parse Trees — Example

Tuples only present in computed treeTuples resent in both treesTuples only present in correct tree

TP = # tuples in both trees

FP = # tuples only in the computed tree

FN = # tuples only in the correct tree

Student Learning Outcomes

Summary

78

● Recursive nature of natural language
■ Natural language allows for nested structure

■ Basic building block: constituents

■ Most common way to capture constituency ➜ context-free grammars (CFGs)

● Syntactic parsing
■ Membership: check if a sentence can be generated by a grammar

■ Identification of all possible parse trees for a sentence

■ Identification of best parse tree for a sentence ➜ Probabilistic CFGs

CYK Parsing Algorithm

79

Outlook for Next Week: Transformers

Photo credit: Jopwell @ Unsplash

Outlook for Next Week: Transformers

Student Learning Outcomes

Photo credit: Hasbro and Paramouht Pictures

https://www.pexels.com/photo/woman-wearing-teal-dress-sitting-on-chair-talking-to-man-2422280/

Pre-Lecture Activity from Last Week

Pre-Lecture Activity for Next Week

80

Read 8 Google Employees Invented Modern
AI. Here’s the Inside Story
(Wired Article)

Apply your own (self-)attention to the article.
Quote a sentence of the article you think most
or least strikes your attention. Tell us why.

Photo credit: Wired

Side notes:
● This task is meant as a warm-up to provide some context for the next lecture
● No worries if you get lost; we will talk about this in the next lecture
● You can just copy-&-paste others' answers but this won't help you learn better

https://www.wired.com/story/eight-google-employees-invented-modern-ai-transformers-paper/#:~:text=Invented%20Modern%20AI.-,Here%27s%20the%20Inside%20Story,tech%20breakthrough%20in%20recent%20history.&text=Eight%20names%20are%20listed%20as,in%20the%20spring%20of%202017.
https://www.wired.com/story/eight-google-employees-invented-modern-ai-transformers-paper/#:~:text=Invented%20Modern%20AI.-,Here%27s%20the%20Inside%20Story,tech%20breakthrough%20in%20recent%20history.&text=Eight%20names%20are%20listed%20as,in%20the%20spring%20of%202017.
https://www.wired.com/story/eight-google-employees-invented-modern-ai-transformers-paper/#:~:text=Invented%20Modern%20AI.-,Here%27s%20the%20Inside%20Story,tech%20breakthrough%20in%20recent%20history.&text=Eight%20names%20are%20listed%20as,in%20the%20spring%20of%202017.

