NUS | Computing

National University
of Singapore

Lecture 8

CS4248: Natural Language Processing

Lecture 8 — Encoder-Decoder

o)
=
N
N
[«))
(3]
(o}
S
o
<)
o)
©
=)
o)
c
(1)
-
)
o
=
=)
©
Z
o)
<
AN
<
n
(&)

Announcements

e TEAMMATES reports to be disseminated soon

m Ungraded, but hopefully helps you figure out any discrepancies between your and
your teammates’ contributions

m Our apologies about the problem with the student namings in our first attempt

m Let your project mentor know about unresponsive teammates so we can go chase them!

e Assignment 3 coming out soon — Word Embeddings, HMMs

Outline

e Recurrent Neural Networks (RNNs)
m Recap Language Models & Motivation
m Basic Neural Network Architectures
m Training RNNs
m RNNs for Language Modeling

Lecture 8

onditional RNNs

o C

m Motivation & Applications

m Encoder-Decoder Architecture
m Attention Mechanism

|

Beam Search Decoding

o)
=
N
N
[+}]
(3]
(o}
S
o
<)
o)
©
=)
o)
c
(1)
-
)
S
=
=)
©
Z
0
<
AN
<
n
(&)

Quick Recap: Language Models

e Goal: Assign probabilities to sentences — 2 basic approaches

(1) Probability of a sequences of words IV
P(W) = P(wy,wa,ws, ..., wy)

example: P("remember to submit your assignment’”) CC@"

(2) Probability of an upcoming word w,,
&

P(wn | w1, Wy, w37 ct 7wn—1)

eample: (" assignment” | "remember to submit your”)

Quick Recap: n-Gram Models

e |anguage models utilizing Markov assumption
m Probabilities depend on only on the last £ words

m Lower risk of zero probabilities in case of lange sequences

N N
P(wla---wa) - Hp(wnlwl:n—l) — Hp(wn’wn—k:n—l)
n=1 n=1

Unigram (1-gram): P(wy|wi. ,—1) = P(wp)

: _ . ~ Calculation of probabilities using
Bigram (2-gram): P(wp|w. —1) = P(wp|w,—1) s Maximum Likelihood Estimations

Trigram (3-gram): P(wn|wy. 1) & Pluwnluw, 2, w, 1)

.

Text Generation Using n-Gram Models

e Generate text by predicting the next word
m Example using trigrams

the movie
%(_/

condition on this .
get probability
distribution

is 0.201

was 0.095 . sample next word based on
' probability distribution

has 0.044

will 0.027

had 0.013

Text Generation Using n-Gram Models

e Generate text by predicting the next word
m Example using trigrams

the movie was
%(_/

condition on this .
get probability
distribution
really 0.032
great 0.030
good 0.026
; sample next word based on
quite 0.024 probability distribution

boring 0.019

Text Generation Using n-Gram Models

e Generate text by predicting the next word
m Example using trigrams

the movie was quite
%(_/

condition on this .
get probability
distribution

funny 0.052

sample next word based on
the 0.046 probability distribution
interesting 0.041
a 0.038

long 0.024

Text Generation Using n-Gram Models

e Generate text by predicting the next word
m Example using trigrams

the movie was quite the

- —
condition on this .
get probability
distribution
candidate probability
. sample next word based on
experience | 0.105 probability distribution
right 0.083
entertaining 0.036
spectacle 0.034
real 0.030

Well, this looks alright, but
how does it work in practice?

Text Generation Using n-Gram Models

e Bigram language model based on 25k movie reviews
m Seed sequence: "the movie "

"the movie that it was intended mistakes mostly wasted my love."

G4

"the movie i had lots of the ocean's nearly incomprehensible plot."

"the movie seemed to say this outing in the idea was shot solely
through syberberg got the world comes across at happiness.”

10

Text Generation Using n-Gram Models

e Trigram language model based on 25k movie reviews
m Seed sequence: "the movie "

"the movie will end happily for nancy 's dad which is short lived , however."
"the movie ends before they come up with the film was crap or embarrassing.”

"the movie and it is still alive and well laid out mansions , and filled with genuine love ."

11

Text Generation Using n-Gram Models

e 4-gram language model based on 25k movie reviews
m Seed sequence: "the movie "

O

<) "the movie also made me laugh harder than you thought possible."

N

"the movie goes to great pains to point the camera and reels off a
polished spiel that blames the game for his team."

"the movie is wrong to take the vampire to an abandoned house
near the ocean that comes through in this film."

12

Long Distance Dependencies

e (Observations

*n-gram LMs are not really designed for text generation; the goal
here is to motivate the need to consider long distance dependencies

m Larger n-gram LMs generally generate better sentences

m Forlarge(r) n-grams: sentences surprisingly grammatical but often incoherent

=*» Key shortcoming: No capturing of long distances dependencies

m Markov Assumption does not hold

m Example:

"All jokes totalled landed, resulting in a movie that is very ‘u: s, "

=* We need information from the "past" to make good predictions

m n-gram models are too limited*

13

In-Lecture Activity (3 mins)

e Task: Find suitable predictions for the missing words

m Post your solution to Canvas > Discussions
(individually or as a group; include all group members' names in the post)

| had no cash, so | immediately headed to the

———

| was quite hungry, so | immediately headed to the

| was sitting all day, so | immediately headed to the

14

Outline

e Recurrent Neural Networks (RNNs)
Recap Language Models & Motivation

m Basic Neural Network Architectures

m Training RNNs

m RNNs for Language Modeling

Lecture 8

onditional RNNs

o C

m Motivation & Applications

m Encoder-Decoder Architecture
m Attention Mechanism

|

Beam Search Decoding

o)
=
N
N
[+}]
(3]
(o}
S
o
<)
o)
©
=)
o)
c
(1)
-
)
S
=
=)
©
Z
0
<
AN
<
n
(&)

Quick Recap: Feedforward Neural Network (A e

e Example: L-layer Feedforward Neural Network (nere: L = 4)

e \
1 P %\v Y
3“:&‘%&‘1‘\ o
T g X\

—— v 71L

16

Feedforward NN — Abstraction

Input Hidden /; Output ¥

Hidden layer(s) | § O OCOO

A

Input | U 0O

e WA (au
\, loer

h=q () , with 8, € R

y =gy (6yh) , with 6, € R2*4

Abstraction

e Represent all units of a layer as one box

e In the following: 1 hidden layer

17

Recurrent Neural Network — Basic ldea

Feedforward NN Recurrent NN
)) Core concept of RNNs: Hidden State
y ‘ yt ’ e Additional vector incorporated into the network
\ﬁﬁj \ﬁx o R
e Commonly holds the last output of the hidden layer
G S =¥ size of hidden state = size of hidden layer
9 9 e Randomly initialized, and to be tuned
N~ S~ through training (= backpropagation)
P L'; (GKX) —— e Basic recurrent formula:
x o _
N = he = f@(h_i:la $t>
. P
2.e,. W .
J “ }&' Z is now a sequence of vectors hidden state of input vector at
doc. ve (e.g., word embeddings) time step # — 1 time step ¢

18

RNN — Unrolled Representation

e Some aelwpelc

V%

\
® SE® o6

Wl T gy Juforany “

s R R e e

A A A

® 0600 @6

e~
+

»

Ao o 3 -

19

Vanilla RNN Implementation s sasi reedtorwara iy

Feedforward NN Recurrent NN
A - oncrete realization om
¥ W G0
AZ/ h = gp <6hx> A ht = tanh <‘9h£L}_@_—_l + 8:):[1?_)
[—
LT Y =09y (@yh> 0 Yt = Gy (thh_}_f)
- 7
A TN S (b
z 2t
A 4

20

Vanilla RNN Implementation — PyTorch

import torch
import torch.nn as nn

class VanillaRNN(nn.Module):

def init (self, input _size, hidden size, output size):
super(VanillaRNN, self). init ()
oW self.hidden size = hidden size
~self.i2h nn.Linear(input size, hidden size)
O, = self.h2h = nn.Linear(hidden_size, hidden_size)
/gself.hZO nn.Linear(hidden size, output size)
CBL, self.out nn.LogSoftmax(dim=1)

def forward(self, inputs, hidden):
hidden = torch.tanh(self.i2h(inputs) + self.h2h(hidden)) <

output self.h2o(hidden)
output self.out(output)

return output, hidden yt = gy (thht)

def init hidden(self):
return torch.zeros(batch size, self.hidden size)

Example usage (core snippet)

model = VanillaRNN(3, 4, 2)

hidden = model.init hidden()

. OGey L= LOw..w-l
for X in sequence: S °
S output, hidden = model(x, hidden)

- N —

hi = tanh (Opphe—1 + 0,p21)

21

RNN — Solving Different Sequence Problems

One-to-One
(basically Feedforward NN)

Many-to-One
‘_—_’_'—_\
(e.g., text classification, sentiment analysis)

8 (]
I [=) L

\ -0-0
T Pii T T

A\

N
AN J

(S J " \ J N J

J

N

Many-to-Many (sequence labeling)
(e.q., POS taggmg Named En't*lty Recogmtlon)

ﬂﬂ{TT T

THI/HWTI T

‘\ / \ J L J L /‘ \

Ak v « il coke

One-to-Many

(e g. image captioning)

llﬁ

J

TN

Many-to-Many (Many-to-One + One-to-Many)

(e.g., machine translation, summarization)

R

H -0

/

22

Outline

e Recurrent Neural Networks (RNNs)
Recap Language Models & Motivation

m Basic Neural Network Architectures

m Training RNNs

m RNNs for Language Modeling

Lecture 8

onditional RNNs

o C

m Motivation & Applications

m Encoder-Decoder Architecture
m Attention Mechanism

|

Beam Search Decoding

o)
=
N
N
[+}]
(3]
(o}
S
o
<)
o)
©
=)
o)
c
(1)
-
)
S
=
=)
©
Z
0
<
AN
<
n
(&)

RNN — Training

(1) Calculate loss L, at all
"relevant” time steps t

Here: Many-to-Many

——p forward pass

Ly Lo Ls Ly Lp_4 Lt
U1 Yo Y3 Y4 Yyr— yr
A A A A i
th th 6hy th th (}hy
Onn Onn Onn Onn Onn j%_h»[
A A A A A A
gxh 93: h euLh exh exh 93: h

RNN _ Traini“g — forward pass

(1) Calculate loss L, at all
"relevant” time steps t

Here: Many-to-One L
1 0 0 A A y
th th 9hy th th th
{ Onn Onn On, O y O, jﬂ[]
A A A . i X
exh exh eth eiﬂh exh exh

RNN — Training

(1) Calculate loss L, at all
"relevant” time steps t

(2) Aggregate all losses L,

——p forward pass

U1 Yo Y3 Y4 Yyr— yr
A \ A A]
ehy ghy 6hy th th (}hy
Onn Onn Onn Onn Onn]ﬂ[
A \ \ A . A

RNN _ Traini“g — forward pass

<@—— backward pass

(1) Calculate loss L, at all
"relevant” time steps t

(2) Aggregate all losses L,

(3) Propagate loss back through
complete computational graph

=» Backpropagation
Through Time (BPTT)

Quick Quiz

What (principle) problem(s) do
you see might arise using BPTT?

f \ \ ./ \
v2 | lyz} 7

\) \
- & \
[’
Y 1y uy
/ P N\ - N /
L {“hh
1 —
\

v

>

O O W

Small gradients }

Huge Losses

<
L Memory Complexity

J

vV

L Time Complexity }

28

Quick Quiz

How can we try to mitigate
these problems with BPTT?

Ly L L3 Ly Ly Lq
R R R P D B
- @ N @ & y N - N p
n| | w| l y3 | _| wa e |yra ur |
& \) .) &
o) T i "IH,T i "hn 1 O T l ”I::/T i ”h,,T ;
= N (G 5 P
| V1ot Ohn | Ohn | Ohi i |)
— —> | —>i
-«— fe—| Je— f— " —{)
9 /T 0 /T ({.A/,T : 9 /T Oy Q.-/T
r1 ‘ ro ‘ T3 T4 rr_q rT

>

O O W

v

v

Use less precision }

|
|

<
Cap losses
J
el BOTT
N
Bring back Markov!
J

|
|

Skip Some
Connections

29

Beyond Vanilla RNN — LSTM & GRU

ey

Vanilla RNN LSTM (Long Short-Term Memory) GRU (Gated Recurrent Unit)
OtA hy

.) 6 i R

hy_y he 2 32 >
s > ' Clanh)
t}nh fe ltr-)ét Otr')

R T | he

J 4

e Observation — Motivation
m Vanilla RNN struggle with very long distance dependencies

m LSTMs and GRUs improve on that (details are beyond the scope here)

30

Outline

e Recurrent Neural Networks (RNNs)
Recap Language Models & Motivation

m Basic Neural Network Architectures

m Training RNNs

m RNNSs for Language Modeling

Lecture 8

onditional RNNs

o C

m Motivation & Applications

m Encoder-Decoder Architecture
m Attention Mechanism

|

Beam Search Decoding

o)
=
N
N
[+}]
(3]
(o}
S
o
<)
o)
©
=)
o)
c
(1)
-
)
S
=
=)
©
Z
0
<
AN
<
n
(&)

RNN for Language Modelling
P(like|(s),I) P(movie|(s), I, like, this)

P(I|(s)) (thi5|(), 1, like) P({/s)|(s), I,like, this, movie)
Target words / like " this movie 4’—%>\

N

o4
<s> / like this movie

i
R

Input words

w
A
A

32

RNN for Language Modelling

/ like this movie </s>

P(I|(s)) P(like|(s), I) P(this|(s), I, like) P(movie|(s), I,like, this) P({/s)|(s),1,like,this, movie)

softmazx softmazx

softmax softmax softmax
Onn o Ohn Oy Onh Ohy Onh Oy Oni O
(T e I R o Y R e Y R e I YR e, I |
chh szzh chh chh chh
coh eubrdetiog [T]]]]]

<s> / like this movie

33

In Detail

softmax

~Jl—>

E = size of word embeddings
H = size of hidden state
V = size of vocabulary

RHXV

\

yt = softmax(0p,hy)

>

a
aaron

act
anthem
basilika
bus

car

care
change
clock
creepy
dog

door
dumb
effort
embedding
enhance

you

Z00

zulu

34

Vanilla RNN Implementation — PyTorch

qQ

et et
W=Dy

¥,

~l O

[SV S AT U

import torch
import torch.nn as nn

class VanillaRnnLM(nn.Module):

def init (self, vocab size, embed size, hidden size):

super(vanillaRnnLM, self). init ()

self.hidden size = hidden size /
self.emb = nn.Embedding(vocab_size, embed size)

self.i2h = nn.Linear(embed size, hidden size)

self.h2h = nn.Linear(hidden size, hidden size)

self.h20 = nn.Linear(hidden size, vocab size)

self.softmax = nn.Softmax(dim=1)

def forward(self, inputs, hidden):
embed = self.emb(inputs)
hidden
logits = self.h2o(hidden)
probs = self.softmax(logits)
return probs, hidden

def init_hidden(self, batch _size):
return torch.zeros(batch size, self.hidden size)

torch.tanh(self.i2h(embed) + self.h2h(hidden))

Only needed to add a

/ word embedding layer

35

RNN for Language Modelling — Generating Sentences

e Picking the word with the highest probability will yield the same sentence

e In practice, e.g., pick randomly based on probability distribution

We can ignore those predictions

Al
4 A\

0 can

z .
D0 [

Seed words (optional)
36

Exam p I es Training & inference setup

e Trained over 25k movie reviews
L - SOurp o'—vM e Use prediction with highest probability as next word

O/ -

generate(model, ['the', 'cast'])

'the cast is excellent , and the acting is very good .’

generate(model, ['i', 'love', 'how'])

"i love how many people have seen this movie , but i do n't think it 's worth a watch ."

generate(model, ['my', ‘'dad'])

"my dad was a <UNK> , but i was n't expecting much ."

generate(model, ['this', 'was'])

"this was a very good movie , but it ‘s not worth the time ."

generate(model, ['some', 'of', 'the'])

‘some of the scenes are not funny , but the story is not a good thing , but it is a good movie .'

generate(model, ['the', 'script'])

“the script is so bad that it 's a good movie ."

37

Outline

e Recurrent Neural Networks (RNNSs)
Recap Language Models & Motivation

m Basic Neural Network Architectures

m Training RNNs

m RNNs for Language Modeling

Lecture 8

onditional RNNs

o C

m Motivation & Applications

m Encoder-Decoder Architecture
m Attention Mechanism

|

Beam Search Decoding

o)
=
N
N
[+}]
(3]
(o}
S
o
<)
o)
©
=)
o)
c
(1)
-
)
S
=
=)
©
Z
0
<
AN
<
n
(&)

So far: Focus on Unconditional LMS -gram or iy

e Unconditional LM: Compute a probability P(wr, ...,

m Using the RNN-based LM below as an example

P(w17w27w37w4,w5) :P(wl)-P(w2|w1)-P(w3\w1,wg)-P(w4|w1,w2,w3)-

w)y) for a sentence

P(ws|wy, wa, w3, wy)

P(wy) P(ws|wy) P(ws|wy,wy) P(wylwy, wo, w3) Plws|wy, wy, w3, wy)
Eﬁz [g g] !
softmazx softmazx softmax softmax softmax
o Oy, o g [t 6 O
hh hh hh hh
TR s I TR s Y PR o NN N s NN VRN s NN R
[000’ Q)Ul chh szzh chh chh chh

wi w9 w3 w4 Wh

39

Now: Conditional Language Models

e Conditional LMs

m (Still) assign a probability to a sequence of words (e.g., a sentence)

m New: probability is conditioned on a given context ¢

P(wi,...,wy) =——> P(wy,...,wy | ¢

S J S J
Y Y

Unconditional LM Conditional LM

e Again using chain rule to calculate joint probability
m Probability of next word depends on all previous words and context C

40

Conditional LMs — Applications

Machine Translation

P(sentence in target language | sentence in source language)

DETECT LANGUAGE GERMAN RUSSIAN ENGLISH v <

What we've got here is failure to communicate. X

D) 46 /5000 -

ENGLISH CHINESE (SIMPLIFIED) GERMAN v

Was wir hier haben, ist ein Kommunikationsfehler. Y

D) 0O %% <

41

Conditional LMs — Applications

Image Captioning Speech Recognition

P(transcript | speech)

P(caption | image)

N N
1= o
1=} o

Amplitude

0 5000 10000 15000 20000 25000
Time

=» "Back off man, I'm a scientist.”

=» "A man riding a red bicycle."

42

Conditional LMs — Applications

Text Summarization Question Answering

P(summary | article) P(answer | question)

THESTRAITSTIMES

Money and mind control: Big
Tech slams ethics brakes on Al o 2

what is the airspeed velocity of an

PUBLISHED SEP 14,2021, 500 PM SGT fF © w -
unladen swallow
SAN FRANCISCO (REUTERS) - In
September last year, Google's cloud unit looked into using
It really depends

artificial intelligence (AlI) to help a financial firm decide
whom to lend money to.

if you're talking

It turned down the client's idea after weeks of internal about an African or
B : — — European swallow
Google's cloud unit looked into using artificial intelligence to help &

a financial firm decide whom to lend money to. It turned down the
client's idea after weeks of internal discussions, deeming the
project too ethically dicey. Google has also blocked new Al
features analysing emotions, fearing cultural insensitivity.
Microsoft restricted software mimicking voices and IBM rejected a

client request for an advanced facial-recognition system. ¢) azelimiczicip (® Do Yo

Reported here for the first time, their vetoes and the
deliberations that led to them reflect a nascent industry- e ‘IJ
wide drive to balance the pursuit of lucrative Al systems

= = 2

with a greater consideration of social responsibility.

"There are opportunities and harms, and our job is to

mavimise onnartunities and minimise harms " said Ms =

Outline

e Recurrent Neural Networks (RNNSs)
Recap Language Models & Motivation

m Basic Neural Network Architectures

m Training RNNs

m RNNs for Language Modeling

Lecture 8

onditional RNNs

o C

m Motivation & Applications

m Encoder-Decoder Architecture
m Attention Mechanism

|

Beam Search Decoding

o)
=
N
N
[+}]
(3]
(o}
S
o
<)
o)
©
=)
o)
c
(1)
-
)
S
=
=)
©
Z
0
<
AN
<
n
(&)

Encoder-Decoder Architecture

e Basic 2-component setup

(1) Encoder

m Learns function that maps context into
a fixed-size vector representation C

m Encoder architecture depending on context
(e.g., CNN for images, RNN for text)

(2) Decoder

m Language model using C
to output sequence of words

m In the following: RNN-based Decoder

encoder

representation

decoder

Amplitude

0 15000
Time

N

\
X XeXeXeXeXeXe]|

"Back off man, I'm a scientist.”

45

Encoder-Decoder Architecture

e Two main questions

(1) How does the encoder perform the mapping?
m Map context (e.g., text, image audio)
to a fixed-sized vector representation

(2) How does the decoder incorporate the encoded context?
m Incorporate context vector into RNN Language Model

Different approaches conceivable — we briefly look into 2 popular ones (context for both: text)

46

EnCOdEI‘-DBGOdeI’ (Kalchbrenner and Blunsom; 2013)

"Some" Encoder RNN Decoder
c = csm(sentence) hi = o(Opphi—1 + 0ppwt + 5)
s = Oq5C yt = softmaz(0p,ht)
‘3%ne" neler
The paper uses a Convolutional Sentence Model only minimal change to
(csm) to map sentences into vectors. That details are Vanilla RNN model

not that important for our discussion here.

Source: Recurrent Continuous Translation Models

EnGOdeI‘-DBGOdeI’ (Kalchbrenner and Blunsom; 2013)

e Decoder visualized

ht = o(Opphi—1 + Oppe + 5)

S }

P(try|s, (s),I,can) P(tols, (s),I,can,try

P(g0|57 <S>7[7 ca 9

\& P(canls, (s), I)

48

Encoder-Decoder (sutskever et at: 201

RNN Encoder RNN Decoder

PEC = tanh (OFFRG2S +05°wr) o b = tanh (055R{S + 005t

No need to compute ;" ygec = Softmax(edechdec)

Last hidden state: henc

—

Hidden state of decoder is initialized with
the last hidden state of the encoder!

Source: Sequence to Sequence Learning with Neural Networks (Note: The paper uses an LSTM not a Vanilla RNN)

49

Encoder-Decoder (sutskever et at: 201

Target sentence (here: English)

4 A N
Encoder RNN I went home <C/s>>
2 2 I I
henc TR S T R =
T
- - — = 1

[] [] [] [] []

Q Q Q O Q Decoder RNN

Ich ging nach Hause <s>

v

Source sentence (here: German)
50

In-Lecture Activity Srombeso leachar (preicy

The decoder gets as input the word predicted in previous step.
What problem can arise during training and how could we address it?

Post your solution to Canvas > Discussions (individually or as a group; include all group members mames in the post)

T i\ Lot >

%

Encoder RNN went home <C/>s>
2 2 I I
henc TR S T R =
T
— — — — — |
[] [1] [1] [1] [1]

O O O O O -

Ich ging nach Hause <s> l_

Gea,\ Decoder RNN

51

Outline

e Recurrent Neural Networks (RNNSs)
Recap Language Models & Motivation

m Basic Neural Network Architectures

m Training RNNs

m RNNs for Language Modeling

Lecture 8

onditional RNNs

o C

m Motivation & Applications

m Encoder-Decoder Architecture
m Attention Mechanism

|

Beam Search Decoding

o)
=
N
N
[+}]
(3]
(o}
S
o
<)
o)
©
=)
o)
c
(1)
-
)
S
=
=)
©
Z
0
<
AN
<
n
(&)

Attention — Motivation

e Encoding ¢ as an "Information Bottleneck"
m Example: RNN encoder

: enc I went home </s>
The last hidden state hT of the encoder needs to
capture all information about the source sentence! Q
8 2 ¢ ¢
N enc
/)\ //\ /]\ L"-\:hT (LLATCCTTTT--~io - (D=~ (-1 (-
— |] — — |
]] [] [1 1]
Ich ging nach Hause <s>
N J
Y

Source sentence (here: German)

53

Attention — Motivation

"You can't cram the meaning of a whole %&!$# sentence into a single $&!#* vector!"

(Prof. Raymond J. Mooney; keynote at ACL '14; 2014)

"Or, for $#%&* sake, DL people, leave language alone and stop saying you solve it."

(Prof. Yoav Goldberg; blog post; 2017)

e Proposed idea: Attention
m Powerful solution to alleviate the bottleneck problem

m Core idea: give decoder "direct access" to encoder to focus on different parts in the source sentence
(Attention (def. from psychology): selectively concentrating on one or a few things while ignoring others)

m Wide range of implementation for attention (but all based on the same core idea)
AL

—

54

Attention — Walkthrough

Attention Layer

Starting point

e Source sentence has been encoded
using Encoder RNN (no changes here)

® First step of decoding process

— — — |
[] L 1] [] [] |
Encoder RNN Ich ging nach Hause <s> Decoder RNN

55

Attention — Walkthrough

Attention Layer

Step 1: Calculation of Attention Scores
Svuilg,
e Attention scores = alignment between the current hidden state
ht of decoder and all hidden states of the encoder hgz)

e Different scoring function applicable, e.g.:

h;héﬂ dot product
. -* -
e; = score (ht, h@) = h;rﬁahg) general

Ug tanh (Qa[ht, h@]) concat

a0 h B %hs hy
— ' ' [—]
1] L1] [] L1
O O O O O
Encoder RNN Ich ging nach

Hause <s> Decoder RNN
56

. Step 2: Calculation of Attention Weights
Attentl On - Wa I kth mugh e Attention weights a; = attention scores pushed

: through a Softmax layer
Attention Layer

exp (e;)

TS exp(eg)

® Attention weights represent probabilities

=» Attention distribution

Z;/l — 0.8|5<P 0.02% 0.065 0.07?|

softmax

D 2 e \h@% hy
1 — 1 1 1 |
[] L 1] [] [] L]
Encoder RNN Ich ging nach Hause <s> Decoder RNN

57

Attention — Walkthrough

Attention Layer

Ct

Step 3: Calculation of Context Vector

e Context vector ¢t = weighted sum of
all hidden states of the encoder h{@

® The weights are the attention weights

= Zai : hg)

1

B 3 ¢ s
—— — — 1 1 |
[] L 1] [] [] L]
Encoder RNN Ich ging nach Hause <s> Decoder RNN

58

Attention — Walkthrough

Attention Layer

Step 4: Calculation of y¢
e Normal decoding step, BUT

® Use concatenation of
¢t and h;as input

Y = softmax (th[ct,)
(most vanilla implementation)

e onlk',

Encoder RNN Ich ging nach

hele '-'\

Decoder RNN
59

Attention — Walkthrough

Attention Layer / went
¢ ¢
Ct (T
(P%

Encoder RNN Ich ging nach Hause <s>

Decoder RNN
o0

Attention — Walkthrough

Attention Layer I went home

(LI~ (LTI -~

Encoder RNN Ich ging nach Hause <s>

Decoder RNN
01

Attention — Walkthrough

Attention Layer I went home </s>

4 2 2 8
1100000000000 i RN RRRE211 11110000100 S 1 S AAAAA AL 11

I e ——
g n g g h
— — — — [— ——
[] [] [] [] L]
Encoder RNN Ich ging nach Hause <s> Decoder RNN

62

H = size of hidden state

Attention I In One Slide V = size of vocabulary

Given: hgl), h@ . th) — N hidden states of encoder

9 .

hy — current/last hidden state of decoder

Step 1: Calculation of Attention Scores _in T (1) 1T (2) T1 (N) N
(e.g., using dot product for simplicity) €= [hf hS ? ht hS A ht hS } cR

C/u{ ,ﬂochﬂ,/‘
Step 2: Calculation of Attention Weights a = softmazx(e) € RY b6 Grlfcs‘;huc:lm

' H
Step 3: Calculation of Context Vector Ct = Z a; - hg) c R
1
Step 4: Calculation of Yt Y = SOfthLZE (th[ct7 ht])
—~—
c RQHXV

63

Dot Attention Implementation — Pylorch

DO OO ULTE WN -

3ot e d pd
OUEsE WNEHEOW

import torch
import torch.nn as nn
import torch.nn.functional as

class DotAttention(nn.Module):

def init (self):
super (DotAttention, self). init ()

def forward(self, encoder hidden states, decoder hidden state):
Shapes of tensors:
encoder hidden states.shape: (batch size, seq len, hidden size)
decoder hidden state.shape: (batch size, hidden size)

—_— e = [Y R B,k RY) € RY
Calculate attention weights

attention weights = torch.bmm(encoder hidden states, decoder hidden state.unsqueeze(2))
attention weights = F.softmax(attention weights.squeeze(2), dim=1)

Calculate context vector -
context = torch.bmm(encoder hidden states.transpose(l, 2), attention weights.unsqueeze(2)).squeeze(2)

a; - btV

) H
SZER

a = softmaz(e) € RY

Concatenate context vector and hidden state of decoder Gt = Z
return torch.cat((context, decoder hidden state), dim=1) i

64

RNN Attention (rewritten)

hidden state of decoder

hidden states of encoder

softmax

/

attention weights

context vector

65

Attention — Generalized Definition

&<,
went ([hy])X h9>h9>hg3)hg4>) Ich [h(‘j]
softmax el R { o 1 =(&
1 Hause \[#®]
Scaled Dot-Product Attention
QKT e Intuition: queries @, keys K, valuesV/
Attention(Q, K, V) = softmax ﬁ V e kcK,q€Q are vectors of sized,
= e scaling by y/d;. leads to more stable gradients

66

Attention — Summary

e \Wide range of benefits
m Can significantly alleviate bottleneck problem

m Can significantly improve performance

LET THEM FIGHT

m Helps with vanishing gradient problem in training —> i hoetye loutt

m Provides some interpretability through attention weights, however...

Attention is not Explanation

Sarthak Jain Byron C. Wallace
Northeastern University Northeastern University
jain.sar@husky.neu.edu b.wallace@northeastern.edu

Source: Attention is not Explanation

VS

Attention is not not Explanation

Sarah Wiegreffe* Yuval Pinter*
School of Interactive Computing School of Interactive Computing
Georgia Institute of Technology Georgia Institute of Technology
saw@gatech.edu uvplgatech.edu

67

Attention — Summary

e Attention as a general concept
m Given a set of vectors VALUES/KEYS and a vector QUERY

m Compute weighted sum of VALUES/KEYS, depending on QUERY

/

e.g.: set of hidden states of encoder h,@

Intuition

AN

e.g.: current hidden state of decoder h;

m The weighted sum = selective summary of the information contained in VALUES/KEYS

(where the QUERY determines which values to focus on)

m Attention = method to obtain a fixed-size representation of an arbitrary set of
representations (VALUES/KEYS), dependent on some other representation (QUERY).

68

Outline

e Recurrent Neural Networks (RNNSs)
Recap Language Models & Motivation

m Basic Neural Network Architectures

m Training RNNs

m RNNs for Language Modeling

Lecture 8

onditional RNNs

o C

m Motivation & Applications

m Encoder-Decoder Architecture
m Attention Mechanism

|

Beam Search Decoding

o)
=
N
N
[+}]
(3]
(o}
S
o
<)
o)
©
=)
o)
c
(1)
-
)
S
=
=)
©
Z
0
<
AN
<
n
(&)

Beam Search Decoding — Motivation

e \What we did so far: Greedy Decoding
m At each decoding step, pick word with the highest probability (=» argmax)

m Might often not yield the best result — Why?

) went home </s>

argmazx argmax argmazx argmax

¢ 4 4 4
(LTI R~y CCEREERRERRTTTOT - CEEEEECCCECEECEEIC-Tm e EeE -

— o oo o - |

L] L] L] L] L]

O O O O O

Ich ging nach Hause <s>

70

Beam Search Decoding — Motivation

e Example

m Machine translation German to English

m Source sentence: "Ich ging hach Hause" (correct translation: " went home")
T el & houng

Decoding step Target sentence

1

2

3

/
| went

| went to

\

direct translation of "nach”

Problem: We can't go back and fix this!

71

Beam Search Decoding — Motivation

o ke GER b
e What we want: Maximize P(y xf/

m Given a source sentence = and a target sentence y

P(ylx) = P(yi|x)-P(ya|z, y1)-P(yslz, y1,y2) .- P(yr|2, y1, Y2, - - -, Yyr—1)

P(y
e
— H P(yt|x7 Yty -, yt—l)
t=1

e Naive idea: compute all possible sequences Y (and pick the one maximizing P(y|2) at the end)
m At each decoding step, consider all V possibilities (v = size of vocabulary) =¥ exhaustive search

m Huge search tree with OSVt) possible path forming a partial translation at step

=» Completely intractable!
72

Beam Search Decoding

e Basic idea: Keep track of k most probable partial translations

m k =beam size (in practice around 5 to 10) Log probabilities to avoid

arithmetic underflow
m hypothesis = each of the partial translations 1, ..., Y¢

t
=» Score for each hypothesis: score(yi, ..., yr) = log P(y1, ..., ye|z) = Z log P(yi|x, y1, ., Yi—1)
i=1

=» At each decoding step, keep track of the k hypothesis with the highest scores

e |mportant notes

m Beam search still does not guarantee to find the optimal solution (but it's "less greedy")

m Much more efficient that exhaustive search

73

Example

<s>

Calculate probability
distribution of next word

Source of Example: Stanford CS244n

74

Example =X

log P(hel(s))
0.7

he

<s>

log P(I|(s))
0.9

Pick top-k words with
the highest probability

Source of Example: Stanford CS244n

75

Example

-0.7

For of the k hypotheses, find
next to k most probable words

.7 log P(hit[(s), he)

he

A

<s>

Source of Example:

struck
2.9 og P(struck|(s), he)

1.6 log P(was|(s), I)

Stanford CS244n

< was

got
18 log P(got(s), 1)

76

Example

-0.7

Of these k? hypotheses, keep
only the k most probable ones

4.7
hit

he

<s>

Source of Example:

-1.6

Stanford CS244n

< was
—get—

77

Example

For of the k hypotheses, find
next to k most probable words

2.8 log P(al(s), he, hit)

Source of Example: Stanford CS244n

1.7 &
pit—K_
~~—le
struck 2.5 Jog P(mel(s), he, hit)
-2.9
2.9 log P(hit|(s), I, was)
-1.6 hit
il
S
~struck
got -3-8 Jog P(struck|(s), I, was)
-1.8

78

Example

Of these k? hypotheses, keep
only the k most probable ones

<s>

Source of Example:

2.8
A.7 a
0.7 hit <
he me
struck 2.5
2.9
2.9
1.6 kit
'0.9 WaS
I —SIruck
got -3.8
1.8

Stanford CS244n

79

Example

For of the k hypotheses, find
next to k most probable words

<s>

Source of Example:

-4.0
tart
-2.8 pi e
1.7 a 3.4
-0.7 hit
he me 33
struck -2.5 with
-2.9
on
2.9 3.5
-1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n

80

Example

Of these k? hypotheses, keep
only the k most probable ones

<s>

Source of Example:

-4.0
tart
-2.8 pie
1.7 a 3.4
-0.7 hit
he me 33
struck -2.5 with
2.9
on
2.9 Y
-1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n

81

Example

For of the k hypotheses, find
next to k most probable words

<s>

Source of Example:

-2.8
A7 a
-0.7 hit
he me
struck 2.5
-2.9
2.9
-1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n

-4.0 -4.8
tart in
pie with
3.4 -4.5
3.3 3.7

with a
on one
-3.5 -4.3

82

Example

Of these k? hypotheses, keep
only the k most probable ones

<s>

Source of Example:

-4.0 -4.8
tart in
28 pie with
1.7 a -3.4 4.5
-0.7 hit
-3.3 -3.7
he me
struck 2.5 with a
-2.9
on one
2.9 -3.5 4.3
-1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n

83

Example

-4.0

tart

pie

<s>

Source of Example:

-3.4

-3.3

with

on

-2.8
A7 a
-0.7 hit
he me
struck 2.5
-2.9
2.9
-1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n

-3.5

-4.8
in
with -4.3
-4.5 pie
3.7

tart
a 4.6
-5.0

one :
43 pie
tart
-5.3

For of the k hypotheses, find
next to k most probable words

84

Example

-4.0

-4.8

tart

pie

with

<s>

Source of Example:

-3.4

-3.3

-4.5

-3.7

with

on

one

-2.8
A7 a
-0.7 h|t
he me
struck 2.5
-2.9
2.9
1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n

-3.5

-4.3

pie G‘é

tart
-4.6

-5.0

pie

tart
-5.3

At the end pick hypothesis
that is most probable

85

Example

<s>

Source of Example:

-4.3
pie

tart

-4.6
-5.0

-2.8
A7 a
-0.7 hit
he me
struck 2.5
-2.9
2.9
-1.6 hit
-0.9 was e
| T4
got -3.8
1.8

Stanford CS244n

-4.0 -4.8
tart in
pie with
3.4 -4.5
3.3 3.7
with a
on one
-3.5 -4.3

pie

tart

-5.3

Backtrack to obtain full hypothesis

86

Beam Search Decoding — Termination

e Different hypotheses may produce </s> at different decoding steps
m When a hypothesis produces </s>, that hypothesis is complete

m Place it aside and continue decoding unfinished hypotheses

e |n general, beam search decoding continues until

m A maximum number T of decoding steps has been reached (very common failsafe!)

m At least n hypotheses have been completed (i.e., each of these hypotheses produced </s>)

N

predefined cutoff

87

Beam Search Decoding — Sampling Strategies

e Pure Sampling
m Random sampling from probability distribution at time step ¢

m Consider all words in vocabulary but sample based on probabilities

e Top-m sampling
m Random sampling but only consider words with m-highest probabilities

m m=1-» greedy search; m =V =¥ pure sampling
=%

Largerm =» output more diverse but "risky"

Lower m =» output more generic but "safe"

88

Outline

e Recurrent Neural Networks (RNNSs)
Recap Language Models & Motivation

m Basic Neural Network Architectures

m Training RNNs

m RNNs for Language Modeling

Lecture 8

onditional RNNs

o C

m Motivation & Applications

m Encoder-Decoder Architecture
m Attention Mechanism

|

Beam Search Decoding

o)
=
N
N
[+}]
(3]
(o}
S
o
<)
o)
©
=)
o)
c
(1)
-
)
S
=
=)
©
Z
0
<
AN
<
n
(&)

Summary

e Recurrent Neural Networks (RNN)
m Established NN-architecture for performing sequence tasks

m Core concept: hidden state (reflecting the internal state of the network at the current timestep)

m Sequence processing without Markov assumption

e Conditional RNNs

m Probability of generated word sequence conditioned on a given context
m Encoder-Decoder architecture (encoder generates the context!)

m Addressing the bottleneck: Attention

m Addressing early missteps: Beam Search Decoding

Pre-Lecture Activity for Next Week

e Assigned Task
m Watch the 9-minute YouTube video linked below
m Take an ambiguous news headline and explain one strategy mentioned in the video

m Post a 1-2 sentence answer to the following questions into the Discussion forum
(you will find the thread on Canvas)

')
The Ling Space: 61 N
"How Do We Interpret Sentences? Parsing Strateqies” 3

>

Side notes:
e This task is meant as a warm-up to provide some context for the next lecture
e No worries if you get lost; we will talk about this in the next lecture
e You can just copy-&-paste others' answers but his won't help you learn better

91

Solutions to Quick Quizzes

e Slide 15:A+ D

m A: Forlong sequences, the gradients may go towards O (i.e., vanish) — but can also explode!
m D: RNNs are intrinsically sequential = very limited w.r.t. parallelization

e Slide22:C+D
m C: Truncated BPTT — backpropagate only a limited number of steps into the "past"

m D: Concepts such as Attention and implementations such as LSTM/GRU introduce shortcuts

92

