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Quick Recap: Language Models

e Goal: Assign probabilities to sentences — 2 basic approaches

(1) Probability of a sequences of words IV
P(W) = P(wy,wa,ws, ..., wp,)

example: (" remember to submit your assignment”)

(2) Probability of an upcoming word w,,
P(wn | w1, W, w3z, - - . 7wn—1)

Bample: (" assignment” | "remember to submit your”)



Quick Recap: n-Gram Models

e |anguage models utilizing Markov assumption

m Probabilities depend on only on the last £ words

m Lower risk of zero probabilities in case of lange sequences

Unigram (1-gram):

Bigram (2-gram):

Trigram (3-gram):

N

n=1

P(wn|w1: n—l) ~ P(wn)
P(wn‘wlz n—l) ~ P(wn’wn—ﬁ

P(wp|wy. p—1) = P(wp|wy—9, w,—1)

P(wla---;wN) - Hp(wnlwl:n—l) — Hp(wn’wn—k:n—l)

Calculation of probabilities using
Maximum Likelihood Estimations




Text Generation Using n-Gram Models

e Generate text by predicting the next word
m Example using trigrams

the movie
%(_/

condition on this .
get probability
distribution

is 0.201

was 0.095 . sample next word based on
' probability distribution

has 0.044

will 0.027

had 0.013



Text Generation Using n-Gram Models

e Generate text by predicting the next word
m Example using trigrams

the movie was
%(_/

condition on this .
get probability
distribution
really 0.032
great 0.030
good 0.026
; sample next word based on
quite 0.024 probability distribution

boring 0.019



Text Generation Using n-Gram Models

e Generate text by predicting the next word
m Example using trigrams

the movie was quite
%(_/

condition on this .
get probability
distribution

funny 0.052

sample next word based on
the 0.046 probability distribution
interesting 0.041
a 0.038

long 0.024



Text Generation Using n-Gram Models

e Generate text by predicting the next word
m Example using trigrams

the movie was quite the

- —
condition on this .
get probability
distribution
candidate probability
. sample next word based on
experience | 0.105 probability distribution
right 0.083
entertaining 0.036
spectacle 0.034
real 0.030

Well, this looks alright, but
how does it work in practice?




Text Generation Using n-Gram Models

e Bigram language model based on 25k movie reviews
m Seed sequence: "the movie "

"the movie that it was intended mistakes mostly wasted my love."
"the movie i had lots of the ocean's nearly incomprehensible plot."”

"the movie seemed to say this outing in the idea was shot solely
through syberberg got the world comes across at happiness.”

10



Text Generation Using n-Gram Models

e Trigram language model based on 25k movie reviews
m Seed sequence: "the movie "

"the movie will end happily for nancy 's dad which is short lived , however."
"the movie ends before they come up with the film was crap or embarrassing.”

"the movie and it is still alive and well laid out mansions , and filled with genuine love ."

11



Text Generation Using n-Gram Models

e 4-gram language model based on 25k movie reviews
m Seed sequence: "the movie "

"the movie also made me laugh harder than you thought possible."

"the movie goes to great pains to point the camera and reels off a
polished spiel that blames the game for his team."

"the movie is wrong to take the vampire to an abandoned house
near the ocean that comes through in this film."

12



*n-gram LMs are not really designed for text generation; the goal

I_O n g D i Sta n c e D e p e n d e n c i es here is to motivate the need to consider long distance dependencies

e Observations
m Larger n-gram LMs generally generate better sentences

m Forlarge(r) n-grams: sentences surprisingly grammatical but of incoherent

=» Key shortcoming: No capturing of long distances dependencies
m Markov Assumption does not hold

m Example:

"All jokes totalled landed, resulting in a movie that is very

=* We need information from the "past" to make good predictions
m n-gram models are too limited*

13




In-Lecture Activity (3 mins)




Outline

e Recurrent Neural Networks (RNNs)
Recap Language Models & Motivation

m Basic Neural Network Architectures

m Training RNNs

m RNNs for Language Modeling

Lecture 8

onditional RNNs

o C

m Motivation & Applications

m Encoder-Decoder Architecture
m Attention Mechanism

|

Beam Search Decoding

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)



Quick Recap: Feedforward Neural Network

e Example: L-layer Feedforward Neural Network (nere: . = 4)

\//p&&
A A\
i 3}\ kz:gl‘ﬂ
N "\
e =

H_J

Output
layer

} hg(x)

16



Feedforward NN — Abstraction

Input Hidden /; Output y

h=g, (0yz) , with 8, € R¥?

y = gy (0yh) , with 0, € R?*

9h, gy : suitable activation functions

Abstraction

e Represent all units of a layer as one box

e In the following: 1 hidden layer

17



Recurrent Neural Network — Basic ldea

Feedforward NN Recurrent NN
) ) Core concept of RNNs: Hidden State
’\ y /‘ L yt J e Additional vector incorporated into the network
1 1 e Commonly holds the last output of the hidden layer
G, S =¥ size of hidden state = size of hidden layer
’ 9 ‘ 9 e Randomly initialized, and to be tuned
L“_/ “J through training (= backpropagation)
P —— e Basic recurrent formula:
T 2t | _
N <« ht = f@(ht—la wt)
X is now a sequence of vectors hidden state of input vector at

(e.g., word embeddings) time step ¢ — 1 time step ¢



RNN — Unrolled Representation

’
-
v

(_@_) :> @_C hy ho j@'ht

19



Vanilla RNN Implementation s sasi reedtorwara iy

Feedforward NN Recurrent NN

A

Concrete realization of hy = fg(hs_1, x¢)

h = gp, (Op) . hi = tanh (Opphe—1 + 0:21)

A

.

A

h

A

v = gy (6,h) @ i = gy (On )

x| |

20



Vanilla RNN Implementation — PyTorch

J =

W N

import torch
import torch.nn as nn

class VanillaRNN(nn.Module):

def

def

def

__init_ (self, input_size, hidden size, output size):

super(VanillaRNN, self). init ()
self.hidden size = hidden size

self.i2h = nn.Linear(input size, hidden size)
self.h2h = nn.Linear(hidden size, hidden size)
self.h2o0 = nn.Linear(hidden size, output size)
self.out = nn.LogSoftmax(dim=1)

forward(self, inputs, hidden):

hidden = torch.tanh(self.i2h(inputs) + self.h2h(hidden)) <
output = self.h2o(hidden)
output = self.out(output)

return output, hidden Yt = gy (thht)
init hidden(self):

return torch.zeros(batch size, self.hidden size)

Example usage (core snippet)

model = VanillaRNN(3, 4, 2)
hidden = model.init hidden()

for x in sequence:
output, hidden = model(x, hidden)

hi = tanh (Opphe—1 + 0,p21)

21



RNN — Solving Different Sequence Problems

One-to-One
(basically Feedforward NN)

Many-to-One

(e.g., text classification, sentiment analysis)

-0 J*T%%I

ii 1

at

Y
NI
/\/
4
N
J
~

E

Many-to-Many (sequence labeling)
(e.g., POS tagging, Named Entity Recognition)

00 [
$6054

One-to-Many

(e.g., image captlonlng

Tor

/ Y

Many-to-Many (Many-to-One + One-to-Many)

(e.g., machine translation, summarization)

(78
_,f_(ﬁ
0
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RNN — Training

(1) Calculate loss L, at all
"relevant” time steps t

Here: Many-to-Many

——p forward pass

L Ly L3 Ly Lr_4 Ly
U1 Y2 Y3 Ya Yr—1 yr
A A A A ]
Ohy th ehy ehy th ehy
Onn Onn Onn Onn s Onn j%_h»[]
A A A A A A




RNN _ Traini“g — forward pass

(1) Calculate loss L, at all
"relevant” time steps t

Here: Many-to-One L
A A A A i ‘
Oy Ohy Ohy Ony Ony Ony
{ Onn O Onh Onn Onn jﬂ[]
A A A . i X
9[[)}1, exh eth eiﬂh exh exh




RNN — Training

(1) Calculate loss L, at all
"relevant” time steps t

(2) Aggregate all losses L,

——p forward pass

U1 Y2 Y3 Y4 Yyr—1 yr
A \ A A ]
ehy th ehy ehy th ehy
Onn Onn Onn, Onn L Onn ]ﬂ[]
A \ \ A . A




RNN _ Traini“g — forward pass

<@—— backward pass

(1) Calculate loss L, at all
"relevant” time steps t

(2) Aggregate all losses L,

(3) Propagate loss back through
complete computational graph

=» Backpropagation
Through Time (BPTT)




Quick Quiz




Quick Quiz




Beyond Vanilla RNN — LSTM & GRU

ey

Vanilla RNN LSTM (Long Short-Term Memory) GRU (Gated Recurrent Unit)
OtA hy

4 ™ s i I

hy_y he 2 32 >
s > ' Clan)
t}nh fe ltr-)ét Otr')

mal 11 1 J he

J 4

e Observation — Motivation
m Vanilla RNN struggle with very long distance dependencies

m LSTMs and GRUs improve on that (details are beyond the scope here)

30
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RNN for Language Modelling
P(like|(s), I) P(movie|(s), I, like, this)

P(I|(s)) P(this|(s), I, like) P((/s)|(s), 1, like,this, movie)

Target words / like this movie </s>

Input words

<s> / like this movie

32



RNN for Language Modelling

/ like this movie </s>

P(I|(s)) P(like|(s), ) P(this|(s), I, like) P(movie|(s), I,like, this) P({/s)|(s),1,like,this, movie)

softmaz softmaz softmaz softmaz softmaz
Onn Oy Onn O Onn Oy Onn O Onn Oy
ho — iy — iy 1 h | hy — hs |
O On O O O
<s> ) like this movie

33



In Detail

softmax

~J

Onn

ht—1 —

E = size of word embeddings
H = size of hidden state
V = size of vocabulary

RHXV

\

yt = softmaz(0p,ht)

a

@aaron

act

anthem

basilika

bus

car

care

change

clock

creepy

dog

hi = tanh (Opphe—1 + 0,p21)

;

RHXH

3

REXH

>

door

dumb

effort

lembedding

enhance

you

Z00

zulu
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Vanilla RNN Implementation — PyTorch

qQ

et et
W=Dy

¥,

~l O

[ SV S AT U

import torch
import torch.nn as nn

class VanillaRnnLM(nn.Module):

def init (self, vocab size, embed size, hidden size):

super(vanillaRnnLM, self). init ()

self.hidden size = hidden size /
self.emb = nn.Embedding(vocab_size, embed size)

self.i2h = nn.Linear(embed size, hidden size)

self.h2h = nn.Linear(hidden size, hidden size)

self.h20 = nn.Linear(hidden size, vocab size)

self.softmax = nn.Softmax(dim=1)

def forward(self, inputs, hidden):
embed = self.emb(inputs)
hidden
logits = self.h2o(hidden)
probs = self.softmax(logits)
return probs, hidden

def init_hidden(self, batch _size):
return torch.zeros(batch size, self.hidden size)

torch.tanh(self.i2h(embed) + self.h2h(hidden))

Only needed to add a

/ word embedding layer

35



RNN for Language Modelling — Generating Sentences

We can ignore those predictions

A

e Picking the word with the highest probability will yield the same sentence

e In practice, e.g., pick randomly based on probability distribution

Ve

2 2
([T (-
hq hy — ha
1 [ 22 ]
PR

Seed words (optional)

36



Exam p I es Training & inference setup

e Trained over 25k movie reviews
e Use prediction with highest probability as next word

generate(model, ['the', 'cast'])
'the cast is excellent , and the acting is very good .’

generate(model, ['i', 'love', 'how'])

"i love how many people have seen this movie , but i do n't think it 's worth a watch ."

generate(model, ['my', ‘'dad'])

"my dad was a <UNK> , but i was n't expecting much ."

generate(model, ['this', 'was'])

"this was a very good movie , but it ‘s not worth the time ."

generate(model, ['some', 'of', 'the'])

‘some of the scenes are not funny , but the story is not a good thing , but it is a good movie .'

generate(model, ['the', 'script'])

“the script is so bad that it 's a good movie ."

37
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So far: Focus on Unconditional LMS -gram or iy

e Unconditional LM: Compute a probability P(w, ..., w

m Using the RNN-based LM below as an example

n) for a sentence

Plwy, wo, w, wy, ws) = P(wr)-P(wsz|wr) Plws|wy, we)-Pws|wy, wa, ws ) P(ws|wi, wa, w3, wy)
P(wy) P(wslwy) P(wglwy,wy)  Plwylwy, wg, w3) P(ws|wy, wo, w3, wy)
E&z {g g] :
softmax softmax softmax softmax softmax
6 O Mg KU [t 6 O
hh hh hh hh hh
ho — g | 2 — g — hy — hs |
exh Qxh exh exh exh
[z ] [ 22 ] [ o5 ] [ 24 ] [z ]
w1 w2 w3 w4 wp,

39



Now: Conditional Language Models

e Conditional LMs

m (Still) assign a probability to a sequence of words (e.g., a sentence)

m New: probability is conditioned on a given context ¢

P(wy,...,wy) = P(wy,...,wy | ¢)

N\ J N\ J
Y Y

Unconditional LM Conditional LM

e Again using chain rule to calculate joint probability
m Probability of next word depends on all previous words and context C

N N
P(U}l, ooy WN I C) — HP(’U}AC, wy, W, "'7wi—1) — HP(wZ|C7 wl:i—l)

40



Conditional LMs — Applications

Machine Translation

P(sentencein target language | sentence in source language)

DETECT LANGUAGE GERMAN RUSSIAN ENGLISH v <

What we've got here is failure to communicate. X

D) 46 /5000 -

ENGLISH CHINESE (SIMPLIFIED) GERMAN v

Was wir hier haben, ist ein Kommunikationsfehler. Y

D) 0O %% <

41



Conditional LMs — Applications

Image Captioning Speech Recognition

P(transcript | speech)

P(caption | image)

N N
1= o
1=} o

Amplitude

0 5000 10000 15000 20000 25000
Time

=» "Back off man, I'm a scientist.”

=» "A man riding a red bicycle."

42



Conditional LMs — Applications

Text Summarization Question Answering

P(summary | article) P(answer | question)

THESTRAITSTIMES

Money and mind control: Big
Tech slams ethics brakes on Al o 2

what is the airspeed velocity of an

PUBLISHED SEP 14,2021, 500 PM SGT fF © v -
unladen swallow
SAN FRANCISCO (REUTERS) - In
September last year, Google's cloud unit looked into using
It really depends

artificial intelligence (AlI) to help a financial firm decide
whom to lend money to.

if you're talking

It turned down the client's idea after weeks of internal about an African or
B : — — European swallow
Google's cloud unit looked into using artificial intelligence to help &

a financial firm decide whom to lend money to. It turned down the
client's idea after weeks of internal discussions, deeming the
project too ethically dicey. Google has also blocked new Al
features analysing emotions, fearing cultural insensitivity.
Microsoft restricted software mimicking voices and IBM rejected a

client request for an advanced facial-recognition system. ¢ ) azeiimiczicip (® Do Yo

Reported here for the first time, their vetoes and the
deliberations that led to them reflect a nascent industry- e ‘IJ
wide drive to balance the pursuit of lucrative Al systems

= = 2

with a greater consideration of social responsibility.

"There are opportunities and harms, and our job is to

mavimise onnartunities and minimise harms " said Ms
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Encoder-Decoder Architecture

e Basic 2-component setup

(1) Encoder

m Learns function that maps context into
a fixed-size vector representation C

m Encoder architecture depending on context
(e.g., CNN for images, RNN for text)

(2) Decoder

m Language model using C
to output sequence of words

m In the following: RNN-based Decoder

encoder

representation

decoder

Amplitude

0 15000
Time

N

\
X XeXeXeXeXeXe]|

"Back off man, I'm a scientist."

45



Encoder-Decoder Architecture

e Two main questions

(1) How does the encoder perform the mapping?
m Map context (e.g., text, image audio)
to a fixed-sized vector representation

(2) How does the decoder incorporate the encoded context?
m Incorporate context vector into RNN Language Model

Different approaches conceivable — we briefly look into 2 popular ones (context for both: text)

46



Encoder-Decoder (Kalchbrenner and Blunsom; 2013)

"Some" Encoder RNN Decoder
c = csm(sentence) hi = o(Opphe—1+ Oppzt + 5)
s = 0.4 yt = softmaz(0p,ht)
The paper uses a Convolutional Sentence Model only minimal change to
(csm) to map sentences into vectors. That details are Vanilla RNN model

not that important for our discussion here.

Source: Recurrent Continuous Translation Models



https://aclanthology.org/D13-1176/

EnGOdeI‘-DBGOdeI’ (Kalchbrenner and Blunsom; 2013)

e Decoder visualized

ht = o(Opphi—1 + Oppat + 5)

48




Encoder-Decoder sutskever et at: 201

RNN Encoder RNN Decoder
henc — tanh ((9 henc 4 genc hdec — tanh Qdec hdec Hdec
hh h Tt an Uy %t
No need to compute ;" ygec = Softmax(edechdec)
Last hidden state: henc with hdec henc

Hidden state of decoder is initialized with
the last hidden state of the encoder!

Source: Sequence to Sequence Learning with Neural Networks (Note: The paper uses an LSTM not a Vanilla RNN)

)

49


https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

Encoder-Decoder sutskever et at: 201

Target sentence (here: English)

Encoder RNN I went home <C/S>>
2 2 2 I
henc 0000000 o 0000 o 0 0 S T RN
T
- - - 1
[ ] [ ] [ ] [ ] [ ]
Ich ging nach Hause <s> Decoder RNN

Source sentence (here: German)

50
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Attention — Motivation

e Encoding ¢ as an "Information Bottleneck"
m Example: RNN encoder

. ene / went home </s>
The last hidden state hT of the encoder needs to
capture all information about the source sentence! Q
2 2 ¢ l
henc (LLATCCTTTT--~io - (D=~ (-1 (-
T
— | ] — — |
[ 1] [ 1 [ 1] [ 1 1
Ich ging nach Hause <s>
N J

o\
Source sentence (here: German)

53



Attention — Motivation

"You can't cram the meaning of a whole %&!$# sentence into a single $&!#* vector!"

(Prof. Raymond J. Mooney; keynote at ACL '14; 2014)

"Or, for $#%&* sake, DL people, leave language alone and stop saying you solve it."

(Prof. Yoav Goldberg; blog post; 2017)

e Proposed idea: Attention
m Powerful solution to alleviate the bottleneck problem

m Core idea: give decoder "direct access" to encoder to focus on different parts in the source sentence
(Attention (def. from psychology): selectively concentrating on one or a few things while ignoring others)

m Wide range of implementation for attention (but all based on the same core idea)

54


https://yoavartzi.com/sp14/slides/mooney.sp14.pdf
https://medium.com/@yoav.goldberg/an-adversarial-review-of-adversarial-generation-of-natural-language-409ac3378bd7

Attention — Walkthrough

Attention Layer

Starting point

e Source sentence has been encoded
using Encoder RNN (no changes here)

® First step of decoding process

— — — |
[ ] L 1] [ ] [ ] |
Encoder RNN Ich ging nach Hause <s> Decoder RNN

55




Attention — Walkthrough

Attention Layer

Step 1: Calculation of Attention Scores

e Attention scores = alignment between the current hidden state
ht of decoder and all hidden states of the encoder h@

e Different scoring function applicable, e.g.:
h?héﬂ dot product

e; = score (ht, h@ ) = h?ﬁahgi) general
Ug tanh (Q(L[ht, h@]) concat

[ — — 1 |
[ ] L 1] [ ] [ ] L ]
Encoder RNN Ich ging nach Hause <s> Decoder RNN

56



. Step 2: Calculation of Attention Weights
Attentl On - Wa I kth ro ugh e Attention weights a; = attention scores pushed

: through a Softmax layer
Attention Layer

exp (e;)

N > exp(e;)

® Attention weights represent probabilities

=» Attention distribution

0.85% 0.02% 0.06% 0.07%
| |

softmax

1 — 1 1 1 |
[ 1] L1 [ ] [ ] L]
Encoder RNN Ich ging nach Hause <s> Decoder RNN

57



. Step 3: Calculation of Context Vector
Attentlon - Walkthro ugh e Context vector ¢t = weighted sum of

: all hidden states of the encoder hgw
Attention Layer

® The weights are the attention weights
Z (2)
)

0.85 m

e

pd!) p B hs
—— — — 1 1 |
[ ] L 1] [ ] [ ] L]
Encoder RNN Ich ging nach Hause <s> Decoder RNN

58



Attention — Walkthrough

Attention Layer

Step 4: Calculation of Y+
e Normal decoding step, BUT

® Use concatenation of
¢t and h;as input

Yyt = softmax (th[ct, ht])

(most vanilla implementation)

Encoder RNN Ich ging nach

Decoder RNN
59



Attention — Walkthrough

Attention Layer / went

4 4
(NI -~ fryy - (-

Encoder RNN Ich ging nach Hause <s>

Decoder RNN
o0



Attention — Walkthrough

Attention Layer I went home

(LI~ (LTI -~

Encoder RNN Ich ging nach Hause <s>

Decoder RNN
01



Attention — Walkthrough

Attention Layer I went home </s>

4 2 2 1
1100000000000 RN ERSE2010 S 1111100 1 AR RRR AR

I e ——
B i 1) i hy
— — — — [ — —— |
[ ] [ ] [ ] [ ] L]
Encoder RNN Ich ging nach Hause <s> Decoder RNN

62



H = size of hidden state

Attention I In One Slide V = size of vocabulary

Given: hgl), h@ e th)

Y

— N hidden states of encoder

h; — current/last hidden state of decoder

Step 1: Calculation of Attention Scores Ty (1) 1T7.(2 Ty (N N
e=[hTRM WITRY AT e R

(e.g., using dot product for simplicity) S

Step 2: Calculation of Attention Weights a = softmazx(e) € RN
. _ ) e R
Step 3: Calculation of Context Vector Ct = a; - g’ €
l
Step 4: Calculation of 1 Yyt = softmax (th[ct, ht])
c RQHXV

63



Dot Attention Implementation — Pylorch

1 import torch

2 import torch.nn as nn

3 dimport torch.nn.functional as

4

5

6 class DotAttention(nn.Module):

8 def init (self):

9 super (DotAttention, self). init ()

10

11 def forward(self, encoder hidden states, decoder hidden state):

12 # Shapes of tensors:

3 # encoder hidden states.shape: (batch size, seq len, hidden size)

14 # decoder hidden state.shape: (batch size, hidden size) i
15 e=[hlnW KIR® AT e RY
6 # Calculate attention weights

7 attention weights = torch.bmm(encoder hidden states, decoder hidden state.unsqueeze(2))

8 attention weights = F.softmax(attention weights.squeeze(2), dim=1) N

19 a = softmaz(e) € R
20 # Calculate context vector
21 context = torch.bmm(encoder hidden states.transpose(l, 2), attention weights.unsqueeze(2)).squeeze(2)
22 i H
23 # Concatenate context vector and hidden state of decoder G = Zai ' hg) €R
24 return torch.cat((context, decoder hidden state), dim=1) U




RNN Attention (rewritten)

hidden state of decoder hidden states of encoder
- &
o >
§5 288
| |
went ([ e 1)X | h0n@ n 10 ich [[ a2 ]
ft v ging [[ »® |
SOItINax e — nach [ h®) ] — ([ Ct ])
Hause A
| 1 [ ] \
N v J context vector

(@1 9o as a4)

/

attention weights
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Attention — Generalized Definition

went ([ hy ])X h9>h9>hg3)h.a4>) Ich [ h(‘j ]
softmax . i { } =( a
1 Hause \[ »® |
Scaled Dot-Product Attention
QKT e Intuition: queries @, keys K, valuesV/

Attention(Q, K, V) = softmax ﬁ V e kcK,q€Q are vector of size d,
e scaling by v/d;. leads to more stable gradients
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Attention — Summary

e Wide range of benefits
m Can significantly alleviate bottleneck problem

m Can significantly improve performance

m Helps with vanishing gradient problem in training

m Provides some interpretability through attention weights, however...

Source: Attention is not Explanation

Attention is not Explanation

Sarthak Jain Byron C. Wallace
Northeastern University Northeastern University
jain.sar@husky.neu.edu b.wallace@northeastern.edu
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Attention — Summary

e Attention as a general concept
m Given a set of vectors VALUES/KEYS and a vector QUERY

m Compute weighted sum of VALUES/KEYS, depending on QUERY

/

e.g.: set of hidden states of encoder hg)

Intuition

AN

e.g.: current hidden state of decoder h;

m The weighted sum = selective summary of the information contained in VALUES/KEYS

(where the QUERY determines which values to focus on)

m Attention = method to obtain a fixed-size representation of an arbitrary set of
representations (VALUES/KEYS), dependent on some other representation (QUERY).
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Beam Search Decoding — Motivation

e \What we did so far: Greedy Decoding
m At each decoding step, pick word with the highest probability (=» argmax)

m Might often not yield the best result — Why?

) went home </s>

argmax argmax argmax argmax

¢ 4 4 4
(LTI R~y CCEREERRERRTTTOT - CEEEEECCCECEECEEIC-Tm e EeE -

— o oo o - |

L] L] L] L] L]

O O O O O

Ich ging nach Hause <s>
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Beam Search Decoding — Motivation

e Example
m Machine translation German to English

m Source sentence: "Ich ging nach Hause" (correct translation: " went home")

Decoding step Target sentence
1 1
2 |went

3 [|went to

\

direct translation of "nach”

Problem: We can't go back and fix this!
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Beam Search Decoding — Motivation

e \What we want: Maximize P(y|z)
m Given a source sentence = and a target sentence y

P(’y|$) - P(y1|$)'P(’y2|$,y1>'P(y3’$,’y1,y2)'...'P(yT|$,y1,y2,...,yT_1>

— H P(yt|x7 Yty -, yt—l)

t=1

e Naive idea: compute all possible sequences Y (and pick the one maximizing P(y|z) at the end)
m At each decoding step, consider all V possibilities (v = size of vocabulary) =¥ exhaustive search

m Huge search tree with O(Vt) possible path forming a partial translation at step ¢

=» Completely intractable!
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Beam Search Decoding

e Basic idea: Keep track of k most probable partial translations

m k =beam size (in practice around 5 to 10) Log probabilities to avoid

arithmetic underflow
m hypothesis = each of the partial translations Y1, ..., Yt

t
=» Score for each hypothesis:  score(yy, ..., yr) = log P(y1, ..., ye|z) = Z log P(yi|x, y1, ., Yi—1)
i=1

=» At each decoding step, keep track of the k hypothesis with the highest scores

e |mportant notes

m Beam search still does not guarantee to find the optimal solution (but it's "less greedy")

m Much more efficient that exhaustive search
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Example

<s>

Calculate probability
distribution of next word

Source of Example: Stanford CS244n
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Example

<s>

log P(hel(s))
0.7

he

log P(I|(s))
0.9

Pick top-k words with
the highest probability

Source of Example: Stanford CS244n
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Example

-0.7

For of the k hypotheses, find
next to k most probable words

.7 log P(hit[(s), he)

he

<s>

Source of Example:

< hit
struck

2.9 Jog P(struck|(s), he)

16 l0g P(was|(s), )

Stanford CS244n

< was

got
18 log P(got(s), 1)
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Example

-0.7

Of these k? hypotheses, keep
only the k most probable ones

1.7

he

hit

<s>

Source of Example:

<

struck

-2.9

-1.6

was

Stanford CS244n

got

-1.8
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Example

-0.7

For of the k hypotheses, find
next to k most probable words

1.7

2.8 log P(al(s), he, hit)

he

hit

<a
me

<s>

Source of Example:

struck

2.5 |og P(me|(s), he, hit)

-2.9

-1.6

2.9 log P(hit|(s), I, was)

was

< hit
struck

Stanford CS244n

got

-3.8 Jog P(struck|(s), I, was)

-1.8
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Example

Of these k? hypotheses, keep
only the k most probable ones

<s>

Source of Example:

-2.8
.7 a
-0.7 hit <
he me
struck 2.5
-2.9
2.9
-1.6 hit
-0.9 was <
I struck
got -3.8
1.8

Stanford CS244n
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Example

For of the k hypotheses, find
next to k most probable words

<s>

Source of Example:

-4.0
tart
-2.8 pie
1.7 a 3.4
-0.7 hit
he me 33
struck 2.5 with
-2.9
on
2.9 3.5
-1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n
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Example

Of these k? hypotheses, keep
only the k most probable ones

<s>

Source of Example:

-4.0
tart
-2.8 pi e
1.7 a 3.4
-0.7 hit
he me 33
struck 2.5 with
2.9
on
2.9 35
-1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n
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Example

For of the k hypotheses, find
next to k most probable words

<s>

Source of Example:

-2.8
.7 a
-0.7 hit
he me
struck 2.5
-2.9
2.9
-1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n

-4.0 -4.8
tart in
pie with
3.4 -4.5
3.3 3.7

with a
on one
-3.5 -4.3
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Example

Of these k? hypotheses, keep
only the k most probable ones

<s>

Source of Example:

-4.0 -4.8
tart in
28 pie with
1.7 a -3.4 4.5
-0.7 hit
-3.3 -3.7
he me
struck 2.5 with a
-2.9
on one
2.9 -3.5 4.3
-1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n
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Example

-4.0

tart

pie

<s>

Source of Example:

-3.4

-3.3

with

on

-2.8
.7 a
-0.7 hit
he me
struck 2.5
-2.9
2.9
-1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n

-3.5

-4.8
in
with -4.3
-4.5 pie
3.7

tart
a 4.6
-5.0

one :
43 pie
tart
-5.3

For of the k hypotheses, find
next to k most probable words

84



https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

-4.0

-4.8

tart

pie

with

<s>

Source of Example:

-3.4

-3.3

-4.5

-3.7

with

on

one

-2.8
.7 a
-0.7 h|t
he me
struck 2.5
-2.9
2.9
1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n

-3.5

-4.3

-4.3
pie

tart
-4.6

-5.0

pie

tart
-5.3

At the end pick hypothesis
that is most probable
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Example

<s>

Source of Example:

-4.3
pie

tart

-4.6
-5.0

-2.8
.7 a
-0.7 hit
he me
struck 2.5
-2.9
2.9
-1.6 hit
-0.9 was
I struck
got -3.8
1.8

Stanford CS244n

-4.0 -4.8
tart in
pie with
3.4 -4.5
3.3 3.7
with a
on one
-3.5 -4.3

pie

tart

-5.3

Backtrack to obtain full hypothesis
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Beam Search Decoding — Termination

e Different hypotheses may produce </s> at different decoding steps
m When a hypothesis produces </s>, that hypothesis is complete

m Place it aside and continue decoding unfinished hypotheses

e |n general, beam search decoding continues until

m A maximum number T of decoding steps has been reached (very common failsafe!)

m At least n hypotheses have been completed (i.e., each of these hypotheses produced </s>)

N

predefined cutoff
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Beam Search Decoding — Sampling Strategies

e Pure Sampling
m Random sampling from probability distribution at time step ¢

m Consider all words in vocabulary but sample based on probabilities

e Top-m sampling
m Random sampling but only consider words with m-highest probabilities

m m =1 -» greedy search; m =V =¥ pure sampling

Largerm =» output more diverse but "risky"

Lowerm =» output more generic but "safe"
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Summary

e Recurrent Neural Networks (RNN)
m Established NN-architecture for performing sequence tasks

m Core concept: hidden state (reflecting the internal state of the network at the current timestep)

m Sequence processing without Markov assumption

e Conditional RNNs

m Probability of generated word sequence conditioned on a given context
m Encoder-Decoder architecture (encoder generates the context!)

m Addressing the bottleneck: Attention

m Addressing early missteps: Beam Search Decoding



Pre-Lecture Activity for Next Week



http://www.fun-with-words.com/ambiguous_headlines.html
https://www.youtube.com/watch?v=2A-FDN7-gyo

Solutions to Quick Quizzes




