
CS4248: Natural Language Processing

Lecture 8 — Encoder–Decoder

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 8

Announcements
● TEAMMATES reports to be disseminated soon

■ Ungraded, but hopefully helps you figure out any discrepancies between your and
your teammates’ contributions.

■ Our apologies about the problem with the student namings in our first attempt.

■ Let your project mentor know about unresponsive teammates so we can go chase them!

● Assignment 3 coming out soon — Word Embeddings, HMMs

2

Recap of Week 07

3

Student Learning Outcomes

Outline
● Recurrent Neural Networks (RNNs)

■ Recap Language Models & Motivation
■ Basic Neural Network Architectures
■ Training RNNs
■ RNNs for Language Modeling

● Conditional RNNs
■ Motivation & Applications
■ Encoder-Decoder Architecture
■ Attention Mechanism
■ Beam Search Decoding

4C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 8

Quick Recap: Language Models

5

● Goal: Assign probabilities to sentences — 2 basic approaches

(1) Probability of a sequences of words

(2) Probability of an upcoming word

Example:

Example:

Quick Recap: n-Gram Models
● Language models utilizing Markov assumption

■ Probabilities depend on only on the last words

■ Lower risk of zero probabilities in case of lange sequences

6

Unigram (1-gram):

Bigram (2-gram):

Trigram (3-gram):

…

Calculation of probabilities using
Maximum Likelihood Estimations

Text Generation Using n-Gram Models
● Generate text by predicting the next word

■ Example using trigrams

7

the movie _______

candidate probability

is 0.201

was 0.095

has 0.044

will 0.027

had 0.013

… …

condition on this
get probability

distribution

sample next word based on
probability distribution

Text Generation Using n-Gram Models
● Generate text by predicting the next word

■ Example using trigrams

8

the movie was _______

candidate probability

really 0.032

great 0.030

good 0.026

quite 0.024

boring 0.019

… …

condition on this
get probability

distribution

sample next word based on
probability distribution

Text Generation Using n-Gram Models
● Generate text by predicting the next word

■ Example using trigrams

9

the movie was quite _______

candidate probability

funny 0.052

the 0.046

interesting 0.041

a 0.038

long 0.024

… …

condition on this
get probability

distribution

sample next word based on
probability distribution

Autoregressive* Generation: Sample
further words conditioned on previous
choices until:
1. reaching a pre-determined length,
2. or until an end-of-sequence token is

generated

*(“Auto”: self / “Regressive”: Regress / Predict):
“Ownself predict ownself”

Text Generation Using n-Gram Models
● Generate text by predicting the next word

■ Example using trigrams

10

the movie was quite the _______

candidate probability

experience 0.105

right 0.083

entertaining 0.036

spectacle 0.034

real 0.030

… …

condition on this
get probability

distribution

sample next word based on
probability distribution

Well, this looks alright, but
how does it work in practice?

Text Generation Using n-Gram Models
● Bigram language model based on 25k movie reviews

■ Seed sequence: “the movie _____”

11

“the movie that it was intended mistakes mostly wasted my love.”

“the movie i had lots of the ocean's nearly incomprehensible plo .”

“the movie seemed to say this outing in the idea was shot solely
through syberberg got the world comes across at happiness.”

Text Generation Using n-Gram Models
● Trigram language model based on 25k movie reviews

■ Seed sequence: “the movie _____”

12

“the movie will end happily for nancy 's dad which is short lived , however.”

“the movie ends before they come up with the film was crap or embarrassing.”

“the movie and it is still alive and well laid out mansions , and filled with genuine love .”

Text Generation Using n-Gram Models
● 4-gram language model based on 25k movie reviews

■ Seed sequence: “the movie _____”

13

“the movie also made me laugh harder than you thought possible.”

“the movie goes to great pains to point the camera and reels off a
polished spiel that blames the game for his team.”

“the movie is wrong to take the vampire to an abandoned house
near the ocean that comes through in this film.”

Long Distance Dependencies
● Observations

■ Larger n-gram LMs generally generate better sentences

■ For large(r) n-grams: sentences surprisingly grammatical but incoherent

14

➜ Key shortcoming: Doesn’t capture long distances dependencies
■ Markov Assumption does not hold

■ Example:

“All jokes totally landed, resulting in a movie that is very ______”

➜ We need information from the “past” to make good predictions
■ n-gram models are too limited*

*n-gram LMs are not really designed for text generation; the goal
here is to motivate the need to consider long distance dependencies

● Task: Find suitable predictions for the missing words

In-Lecture Activity (2 mins)

15

🏃 In-Lecture Activity (2 mins)

I had no cash, so I immediately headed to the __________

I was quite hungry, so I immediately headed to the __________

I was sitting all day, so I immediately headed to the __________

Student Learning Outcomes

Designing an ideal sequence model
To model sequences well, we need to:

1. Handle variable-length sequences
2. Track long-distance dependencies
3. Maintain information about token order
4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) as a solution to this problem.

16

Outline

17

● Recurrent Neural Networks (RNNs)
■ Recap Language Models & Motivation
■ Basic Neural Network Architectures
■ Training RNNs
■ RNNs for Language Modeling

● Conditional RNNs
■ Motivation & Applications
■ Encoder-Decoder Architecture
■ Attention Mechanism
■ Beam Search Decoding

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 8

18

● Example: L-layer Feedforward Neural Network (here: L = 4)

Quick Recap of Week 05: Feedforward Neural Network

Input Hidden layers

Output
layer

Feedforward NN — Abstraction

19

Hidden OutputInput

suitable activation functions

Input

Hidden layer(s)

Output Abstraction
● Represent all units of a layer as one box

● In the following: 1 hidden layer

Recurrent Neural Network — Basic Idea

20

Feedforward NN Recurrent NN

Core concept of RNNs: Hidden State
● Additional vector incorporated into the network

● Commonly holds the last output of the hidden layer
➜ size of hidden state = size of hidden layer

● Randomly initialized, and to be tuned
through training (➜ backpropagation)

● Basic recurrent formula:

is now a sequence of vectors
(e.g., word embeddings)

input vector at
time step

hidden state of
time step

RNN — Unrolled Representation

21

… …

Recurrent NN — Unrolling the Recurrence

22

Input

Hidden layer(s)

Output

Vanilla RNN Implementation (vs Basic Feedforward NN)

23

Feedforward NN

Concrete realization of

Recurrent NN

Vanilla RNN Implementation — PyTorch

24

Example usage (core snippet)

RNN — Solving Different Sequence Problems

25

Many-to-One
(e.g., text classification, sentiment analysis)

One-to-Many
(e.g., image captioning)

Many-to-Many (sequence labeling)
(e.g., POS tagging, Named Entity Recognition)

Many-to-Many (Many-to-One + One-to-Many)
(e.g., machine translation, summarization)

One-to-One
(basically Feedforward NN)

Outline

26

● Recurrent Neural Networks (RNNs)
■ Recap Language Models & Motivation
■ Basic Neural Network Architectures
■ Training RNNs
■ RNNs for Language Modeling

● Conditional RNNs
■ Motivation & Applications
■ Encoder-Decoder Architecture
■ Attention Mechanism
■ Beam Search Decoding

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 8

RNN — Training

27

(1) Calculate loss Lt at all
“relevant” time steps t

Here: Many-to-Many

forward pass

RNN — Training

28

(1) Calculate loss Lt at all
“relevant” time steps t

Here: Many-to-One

forward pass

RNN — Training

29

(1) Calculate loss Lt at all
“relevant” time steps t

(2) Aggregate all losses Lt

forward pass

RNN — Training

30

(1) Calculate loss Lt at all
“relevant” time steps t

(2) Aggregate all losses Lt

(3) Propagate loss back through
complete computational graph

➜ Backpropagation
 Through Time (BPTT)

forward pass

backward pass

🏃 Quick Quiz 1 of 2

31

What (principal) problem(s) do
you see might arise using BPTT?

Memory Complexity

Small gradients

Time Complexity

Huge Losses

A
B
C
D

In-Lecture Activity (2 mins)

🏃 Quick Quiz 2 of 2

32

How can we try to mitigate
these problems with BPTT?

Cap losses

Use less precision

Skip Some
Connections

Bring back Markov!

A
B
C
D

In-Lecture Activity (2 mins)

Beyond Vanilla RNN — LSTM & GRU

33

Vanilla RNN LSTM (Long Short-Term Memory) GRU (Gated Recurrent Unit)

● Observation — Motivation
■ Vanilla RNN struggle with very long distance dependencies

■ LSTMs and GRUs improve on that (details are beyond the scope here)

Use these in practice!

Outline

34

● Recurrent Neural Networks (RNNs)
■ Recap Language Models & Motivation
■ Basic Neural Network Architectures
■ Training RNNs
■ RNNs for Language Modeling

● Conditional RNNs
■ Motivation & Applications
■ Encoder-Decoder Architecture
■ Attention Mechanism
■ Beam Search Decoding

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 8

RNN for Language Modelling

35

</s>

<s> I like this movie

I like this movieTarget words

Input words

RNN for Language Modelling

36

</s>I like this movie

<s> I like this movie

In Detail

37

a
aaron
act
anthem
basilika
bus
car
care
change
clock
creepy
dog
door
dumb
effort
embedding
enhance

you
zoo
zulu

E = size of word embeddings
H = size of hidden state
V = size of vocabulary

Vanilla RNN Implementation — PyTorch

38

Only need to add a
word embedding layer

RNN for Language Modelling — Generating Sentences

39

<s>

I

I

can try

can

to go

Seed words (optional)

We can ignore those predictions

● Picking the word with the highest probability will yield the same sentence

● In practice, e.g., pick randomly based on probability distribution

Examples

40

Training & inference setup
● Trained over 25k movie reviews
● Use prediction with highest probability as next word

Outline

41

● Recurrent Neural Networks (RNNs)
■ Recap Language Models & Motivation
■ Basic Neural Network Architectures
■ Training RNNs
■ RNNs for Language Modeling

● Conditional RNNs
■ Motivation & Applications
■ Encoder-Decoder Architecture
■ Attention Mechanism
■ Beam Search Decoding

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 8

So far: Focus on Unconditional LMs (n-Gram or RNN)

42

● Unconditional LM: Compute a probability for a sentence
■ Using the RNN-based LM below as an example

Now: Conditional Language Models
● Conditional LMs

■ (Still) assign a probability to a sequence of words (e.g., a sentence)

■ New: probability is conditioned on a given context

● Again using chain rule to calculate joint probability
■ Probability of next word depends on all previous words and context

43

Unconditional LM Conditional LM

Conditional LMs — Applications

44

Machine Translation

Conditional LMs — Applications

45

➜ “A man riding a red bicycle.”

Image Captioning Speech Recognition

➜ “Back off man, I'm a scientist.”

Conditional LMs — Applications

46

Google's cloud unit looked into using artificial intelligence to help
a financial firm decide whom to lend money to. It turned down the
client's idea after weeks of internal discussions, deeming the
project too ethically dicey. Google has also blocked new AI
features analysing emotions, fearing cultural insensitivity.
Microsoft restricted software mimicking voices and IBM rejected a
client request for an advanced facial-recognition system.

Text Summarization Question Answering

● Assigned Task
■ Post a 1-2 sentence answer to the following question in your Tutorial Group’s discussion

Pre-Lecture Activity for Last Week

47

Pre-Lecture Activity for Last Week

“What is an encoder? What is a decoder?
What are we trying to encode/decode anyways?”

What are we en-/de-coding?
Pre-Lecture Activity for Last Week

48

Outline

49

● Recurrent Neural Networks (RNNs)
■ Recap Language Models & Motivation
■ Basic Neural Network Architectures
■ Training RNNs
■ RNNs for Language Modeling

● Conditional RNNs
■ Motivation & Applications
■ Encoder-Decoder Architecture
■ Attention Mechanism
■ Beam Search Decoding

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 8

Encoder-Decoder Architecture
● Basic 2-component setup

50

(1) Encoder
■ Learns function that maps context into

a fixed-size vector representation

■ Encoder architecture depending on context
(e.g., CNN for images, RNN for text)

(2) Decoder
■ Language model using

to output sequence of words

■ In the following: RNN-based Decoder
“Back off man, I'm a scientist.”

encoder

decoder

representation

Encoder-Decoder Architecture
● Two main questions

51

(1) How does the encoder perform the mapping?
■ Map context (e.g., text, image audio)

to a fixed-sized vector representation

(2) How does the decoder incorporate the encoded context?
■ Incorporate context vector into RNN Language Model

Different approaches conceivable — we’ll briefly look into two popular ones (context for both: text)

Encoder-Decoder (Kalchbrenner and Blunsom; 2013)

52
Source: Recurrent Continuous Translation Models

“Some” Encoder RNN Decoder

The paper uses a Convolutional Sentence Model
(csm) to map sentences into vectors. The details are

not that important for our discussion here.

only minimal change to
the Vanilla RNN model

https://aclanthology.org/D13-1176/

Encoder-Decoder (Kalchbrenner and Blunsom; 2013)

53

● Decoder visualized

<s>

I can try to go

Encoder-Decoder (Sutskever et al.; 2014)

54
Source: Sequence to Sequence Learning with Neural Networks (Note: The paper uses an LSTM, not a Vanilla RNN)

RNN Encoder RNN Decoder

No need to compute

Last hidden state: with

Hidden state of decoder is initialized with
the last hidden state of the encoder!

https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

Encoder-Decoder (Sutskever et al.; 2014)

55

Ich ging nach Hause <s>

I went home </s>Encoder RNN

Decoder RNN

Source sentence (here: German)

Target sentence (here: English)

In-Lecture Activity (7 mins)

56

🏃 Double Negative
● Post an answer to the below topic to

Canvas > Discussions > [In-Lecture Interaction] L1
(Help like other classmate’s responses too! 👍)

In both versions of the Encoder–Decoder, the context
representation . is a fixed-size vector.

Think of ways to get around this bottleneck.

Break

57

Outline

58

● Recurrent Neural Networks (RNNs)
■ Recap Language Models & Motivation
■ Basic Neural Network Architectures
■ Training RNNs
■ RNNs for Language Modeling

● Conditional RNNs
■ Motivation & Applications
■ Encoder-Decoder Architecture
■ Attention Mechanism
■ Beam Search Decoding

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 8

Attention — Motivation

59

Ich ging nach Hause <s>

I went home </s>

Source sentence (here: German)

● Encoding as an “Information Bottleneck”
■ Example: RNN encoder

The last hidden state of the encoder needs to
capture all information about the source sentence!

Attention — Motivation

● Proposed idea: Attention
■ Powerful solution to alleviate the bottleneck problem

■ Core idea: give decoder “direct access” to encoder to focus on different parts in the source sentence
(Attention (def. from psychology): selectively concentrating on one or a few things while ignoring others)

■ Wide range of implementation for attention (but all based on the same core idea)

60

“You can’t cram the meaning of a whole %&!$# sentence into a single $&!#* vector!”

(Prof. Raymond J. Mooney; keynote at ACL '14; 2014)

“Or, for $#%&* sake, DL people, leave language alone and stop saying you solve it.”
(Prof. Yoav Goldberg; blog post; 2017)

https://yoavartzi.com/sp14/slides/mooney.sp14.pdf
https://medium.com/@yoav.goldberg/an-adversarial-review-of-adversarial-generation-of-natural-language-409ac3378bd7

Attention — Walkthrough

61
Encoder RNN Decoder RNN

Attention Layer
Starting point

● Source sentence has been encoded
using Encoder RNN (no changes here)

● First step of decoding process

Ich ging nach Hause <s>

Attention — Walkthrough

62
Encoder RNN Decoder RNN

Attention Layer

Step 1: Calculation of Attention Scores
● Attention scores = alignment between the current hidden state

 of decoder and all hidden states of the encoder

● Different scoring functions can be applied, e.g.:

Ich ging nach Hause <s>

Attention — Walkthrough

63
Encoder RNN Decoder RNN

Attention Layer

Step 2: Calculation of Attention Weights
● Attention weights = attention scores pushed

through a Softmax layer

● Attention weights represent probabilities
 ➜ Attention distribution

Ich ging nach Hause <s>

Attention — Walkthrough

64
Encoder RNN Decoder RNN

Attention Layer

Step 3: Calculation of Context Vector
● Context vector = weighted sum of

all hidden states of the encoder

● The weights are the attention weights

Ich ging nach Hause <s>

Attention — Walkthrough

65
Encoder RNN Decoder RNN

Attention Layer

Step 4: Calculation of

● Normal decoding step, BUT

● Use concatenation of
 and as input

(most vanilla implementation)

Ich ging nach Hause <s>

I

Attention — Walkthrough

66
Encoder RNN Decoder RNN

Attention Layer

Ich ging nach Hause <s>

I went

Attention — Walkthrough

67
Encoder RNN Decoder RNN

Attention Layer

Ich ging nach Hause <s>

I went home

Attention — Walkthrough

68
Encoder RNN Decoder RNN

Attention Layer

Ich ging nach Hause <s>

I went home </s>

Attention — In One Slide

69

Given: — N hidden states of encoder

— current/last hidden state of decoder

Step 1: Calculation of Attention Scores
(e.g., using dot product for simplicity)

Step 2: Calculation of Attention Weights

Step 3: Calculation of Context Vector

H = size of hidden state
V = size of vocabulary

Step 4: Calculation of

Dot Attention Implementation — PyTorch

70

Attention — Summary
● Wide range of benefits

■ Can significantly alleviate bottleneck problem

■ Can significantly improve performance

■ Helps with vanishing gradient problem in training

■ Provides some interpretability through attention weights, however…

71Source: Attention is not Explanation

https://aclanthology.org/N19-1357/

🏃 Quick Quiz 3

72

Attention is often described in terms of
queries,

keys
and values.

Which option goes with which Q, K and V?

Encoded State .

Input .

Decoded State .

Decoded Output .

A
B
C
D

In-Lecture Activity (5 mins)

Attention — Summary
● Attention as a general concept

■ Given a set of vectors VALUES and a vector QUERY

■ Compute weighted sum of VALUES, depending on QUERY

● Intuition
■ The weighted sum = selective summary of the information contained in VALUES

(where the QUERY determines which values to focus on)

■ Attention = method to obtain a fixed-size representation of an arbitrary set of
representations (VALUES), dependent on some other representation (QUERY).

73

e.g.: current hidden state of decodere.g.: set of hidden states of encoder

Outline

74

● Recurrent Neural Networks (RNNs)
■ Recap Language Models & Motivation
■ Basic Neural Network Architectures
■ Training RNNs
■ RNNs for Language Modeling

● Conditional RNNs
■ Motivation & Applications
■ Encoder-Decoder Architecture
■ Attention Mechanism
■ Beam Search Decoding

C
S4

24
8

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 —
 L

ec
tu

re
 8

Beam Search Decoding — Motivation
● What we did so far: Greedy Decoding

■ At each decoding step, pick word with the highest probability (➜ argmax)

■ Might often not yield the best result — Why?

75

Ich ging nach Hause <s>

I went home </s>

Beam Search Decoding — Motivation
● Example

■ Machine translation German to English

■ Source sentence: “Ich ging nach Hause” (correct translation: “I went home”)

76

Decoding step Target sentence

1 I

2 I went _____

3 I went to _____

…

direct translation of “nach”

Problem: We can't go back and fix this!

Beam Search Decoding — Motivation
● What we want: Maximize

■ Given a source sentence and a target sentence

● Naive idea: compute all possible sequences (and pick the one maximizing at the end)

■ At each decoding step, consider all V possibilities (V = size of vocabulary) ➜ exhaustive search

■ Huge search tree with possible paths, forming a partial translation at step

77

➜ Completely intractable!

Beam Search Decoding
● Basic idea: Keep track of k most probable partial translations

■ k = beam size (in practice around 5 to 10)

■ hypothesis = each of the partial translations

● Important notes
■ Beam search still does not guarantee to find the optimal solution (but it's “less greedy”)

■ Much more efficient that exhaustive search

78

➜ Score for each hypothesis:

Log probabilities to avoid
arithmetic underflow

➜ At each decoding step, keep track of the k hypothesis with the highest scores

Example

79Source of Example: Stanford CS244n

<s>

Calculate probability
distribution of next word

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

80Source of Example: Stanford CS244n

he

I

<s>

-0.7

-0.9

Pick top-k words with
the highest probability

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

81Source of Example: Stanford CS244n

he

I

<s>

hit

struck

was

got

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

For of the k hypotheses, find
next to k most probable words

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

82Source of Example: Stanford CS244n

he

I

<s>

hit

struck

was

got

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

Of these k2 hypotheses, keep
only the k most probable ones

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

83Source of Example: Stanford CS244n

he

I

<s>

hit

struck

was

got

hit

struck

a

me
-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

For of the k hypotheses, find
next to k most probable words

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

84Source of Example: Stanford CS244n

he

I

<s>

hit

struck

was

got

hit

struck

a

me
-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

Of these k2 hypotheses, keep
only the k most probable ones

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

85Source of Example: Stanford CS244n

he

I

<s>

hit

struck

was

got

hit

struck

a

me

tart

pie

with

on

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

For of the k hypotheses, find
next to k most probable words

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

86Source of Example: Stanford CS244n

he

I

<s>

hit

struck

was

got

hit

struck

a

me

tart

pie

with

on

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

Of these k2 hypotheses, keep
only the k most probable ones

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

87Source of Example: Stanford CS244n

he

I

<s>

hit

struck

was

got

hit

struck

a

me

tart

pie

with

on

a

one

in

with

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

-4.8

-4.5

-3.7

-4.3

For of the k hypotheses, find
next to k most probable words

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

88Source of Example: Stanford CS244n

he

I

<s>

hit

struck

was

got

hit

struck

a

me

tart

pie

with

on

a

one

in

with

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

-4.8

-4.5

-3.7

-4.3

Of these k2 hypotheses, keep
only the k most probable ones

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

89Source of Example: Stanford CS244n

he

I

<s>

hit

struck

was

got

hit

struck

a

me

tart

pie

with

on

a

one

in

with
pie

tart

pie

tart

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

-4.8

-4.5

-3.7

-4.3

-4.3

-4.6

-5.0

-5.3

For of the k hypotheses, find
next to k most probable words

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

90Source of Example: Stanford CS244n

he

I

<s>

hit

struck

was

got

hit

struck

a

me

tart

pie

with

on

a

one

in

with
pie

tart

pie

tart

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

-4.8

-4.5

-3.7

-4.3

-4.3

-4.6

-5.0

-5.3

At the end pick hypothesis
that is most probable

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Example

91Source of Example: Stanford CS244n

he

I

<s>

hit

struck

was

got

hit

struck

a

me

tart

pie

with

on

a

one

in

with
pie

tart

pie

tart

-0.7

-0.9

-1.7

-2.9

-1.6

-1.8

-2.8

-2.5

-2.9

-3.8

-4.0

-3.4

-3.3

-3.5

-4.8

-4.5

-3.7

-4.3

-4.3

-4.6

-5.0

-5.3

Backtrack to obtain full hypothesis

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture10.pdf

Beam Search Decoding — Termination
● Different hypothesis may produce </s> at different decoding steps

■ When a hypothesis produces </s>, that hypothesis is complete

■ Place it aside and continue decoding unfinished hypotheses

● In general, beam search decoding continues until
■ A maximum number T of decoding steps has been reached (very common failsafe!)

■ At least n hypotheses have been completed (i.e., each of these hypotheses produced </s>)

92

predefined cutoff

Beam Search Decoding — Sampling Strategies
● Pure Sampling

■ Random sampling from probability distribution at time step t

■ Consider all words in vocabulary but sample based on probabilities

● Top-m sampling
■ Random sampling but only consider words with m-highest probabilities

■ m = 1 ➜ greedy search; m = V ➜ pure sampling

93

Larger m ➜ output more diverse but “risky”

Lower m ➜ output more generic but “safe”

Summary
● Recurrent Neural Networks (RNN)

■ Established NN-architecture for performing sequence tasks

■ Core concept: hidden state (reflecting the internal state of the network at the current timestep)

■ Sequence processing without Markov assumption

● Conditional RNNs
■ Probability of generated word sequence conditioned on a given context

■ Encoder-Decoder architecture (encoder generates the context!)

■ Addressing the bottleneck: Attention

■ Addressing early missteps: Beam Search Decoding

94

Student Learning Outcomes

Student Learning Outcomes

95Photo credit: Wikipedia

Outlook for Next Week: Trees

https://en.wikipedia.org/wiki/File:Subordination_trees_2.jpg

Pre-Lecture Activity for Next Week

Pre-Lecture Activity for Next Week

96

● Assigned Task
■ Watch the 9-minute YouTube video linked below
■ Take an ambiguous news headline and explain one strategy mentioned in the video
■ Post a 1-2 sentence answer in the [Pre-Lecture discussion]

Side notes:
● This task is meant as a warm-up to provide some context for the next lecture
● No worries if you get lost; we will talk about this in the next lecture
● You can just copy-&-paste others' answers but this won't help you learn better

The Ling Space:
"How Do We Interpret Sentences? Parsing Strategies"

http://www.fun-with-words.com/ambiguous_headlines.html
https://www.youtube.com/watch?v=2A-FDN7-gyo

