National University
of Singapore

NUS | Computing

Lecture 5

CS4248: Natural Language Processing

Lecture 5 — Introduction into Connectionist Machine Learning
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Recap of Week 04

Text Classification

e Formal setup
m X — setof all documents; # € X — a single document

m Y —setof all classes (or class lavels); § € Y — a single class (or class label)

o Classification task
m Mapping h from input space X to output spaceY’

h(z) =y

h:X—->Y

e.g., h(“T’he movie is great.”) = “positive”

"True" N hich Note: A document might be assigned to more
~True™ mapping whic than one class -» multilabel classification
is unknown in practice
Note 2: Our SLP3 textbook uses d for x and ¢
fory. We'll use both interchangeably.

Document-Term Matrix with ¢ f-:df Weights

e Putting it all together

D
wyq = (1+logygtfia) - logyg _|df|
t

o Side notes
m No real theoretic underpinning, but? f-idf works best in practice

u Not all definitions of ¢ f-idf apply a sublinear scaling of? f; 4
m Alternative names: ¢ f-idf , t f xidf

m There are different weighting functions for calculating? f-idf

74

Naive Bayes Classifier + BoW — Discussion

e Naive Bayes vs. Language Models
= Naive Bayes makes a non-contextual decision (unigram model; but can be extended to larger n-grams)

m Naive Bayes is an LM! It treats each class like a separate language model

e Biggest pro: simplicity
n Easy to understand & implement, fast, not very data hungry, interpretable results

e Biggest con: assumption of conditional independence
m For most types of data, the features are typically not independent

m For text classification (features = words) it actually often works well in practice
(particularly with some additional "tweaking" of the data)
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Classification: Evaluation — Why so Many Measures?

e Observation: FP and FN not . TP
X Precision = ——— Recall =
always equally problematic TP+ FP
e Example: Suicide prediction
(e.g., from social media content posted by users)
m BAD: misclassifying a high-risk person .
Recall > Precision
m OK-ish: misclassifying a healthy person

e Example: News article classification
(e.g., for search engines such as Google News)
m BAD: showing article of wrong category }

Recall < Precision
m OK: missing a relevant article in result

TP

TP+ FN
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Announcements

\7/oject Groups Announced
m There may have been some errors, please check your team and update us per our announcement

if you see anything amiss.

m Find in Canvas >> Files >> Project

\O/P(oject’s Intermediate Update Rubric / Template is available
m Live version (best bet) at https://bit.ly/cs4248-2320-iu-template

e /Assignment 2 out on Saturday, once Assignment 1 is in
m Assignment 2 will be a Text Classification competition, restricted to ML algorithms taught
(Naive Bayes and Logistic Regression)
m Emphasis on Natural Language Feature Engineering



Outline

e Generative vs. Discriminative Classifiers

e Logistic Regression

Setup as Probabilistic Classifier
Cross-Entropy Loss Function
Gradient Descent

Overfitting & Regularization
Multiclass Logistic Regression

e Towards Neural Networks
m Motivation: XOR Problem
m Basic Neural Network Architecture
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TﬂXt C|aSSifIGati0I1 (well, for classification, in general)

e Formal setup

m X — setof all documents; = € X — a single document

m Y — setofall classes (or class labels); Y € Y — a single class (or class label)

m Mapping h from input space Xtooutputspace Y @ h: X — Y

. A _ . We find / by learning / from the data
=» Find best / to approximate the true mapping h <+——— . _ .
=» Supervised (Machine) Learning

® Probabilistic Classifiers (e.g., Naive B

Instead of h: X — Y, lear (or P(y|z) for an (z,y)pair)



Text Classification — Probabilistic Classifiers

e Common goal: Learn P(y|x)
m Learn P(y|x) from the data

e Two basic approaches

( Classifiers = Pla,y) o< Plyle)

m Learn joint probability P(x,y) -> Q = argmax }D(x]y)P(y)\

m Apply Bayes Rule to get P(y|z) yeYy

2) Discriminative €fassifiers » ¢ = argmax P(y|z)
B y|x) directly yey




Generative vs. Discriminative Classifiers — Intuition

e Task: Train a classifier to distinguish zebra from elephants images

Source: Wiki Common (CC BY-SA 4.0): zebra, elephant

1Y



Generative vs. Discriminative Classifiers — Intuition

e (Generative classifier
m Builds 2 mode

ebra and elephant images look like - };

Feature x; P(x, zebra) P(x; elephant)
“is grey” 0.32 0.95
“is striped” 0.99 0.08
“long nose” 0.40 0.98
“four legs” 0.88 0.99

Some abstract internal
representation / model of
language and the world

m Models allow to assign a “zebra probability” and an
“elephant probability” to any image (using Bayes Rule)

m[ Givan a new image:
Run both models and see which fits better




Generative vs. Discriminative Classifiers — Intuition

e Discriminative classifier
m Tries to distinqguish zebra and elephant images

m No model of how zebra and elephant images “look like”

Question: How could we quickly
distinguish zebras from elephants?




Generative vs. Discriminative Classifiers

Generative classifier
e Learn data distribution of each class

e C(Classifies new data item by comparing
the item with each class distribution

Discriminative classifier ®
e Learn the decision boundaries between classes gim .
e Classifies new data item based on /" B

in which “region” the new item falls !




Outline

e (Generative vs. Discriminative Classifiers

e Logistic Regression

Setup as Probabilistic Classifier
Cross-Entropy Loss Function
Gradient Descent

Overfitting & Regularization
Multiclass Logistic Regression

e Towards Neural Networks
m Motivation: XOR Problem
m Basic Neural Network Architecture
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Linear Models

y=mx-+b

e Underlying assumption: | '
m There exists a linear relationship between xmand dependent variable y<]>

/

Predicted value which
is hopefully close to y(J)

i) = by (a0)) = 1 (b+ elhﬂ B + -+ bal))

— 1> 6] 40
1=1

QZ{b,Ql,QQ,...,Qn}, beR, 6,eR

~

These are the parameters we need to learn
=» Learning = finding the “right” parameter values

12



Linear Models — More User-Friendly Notation

e \ector representation
m Bias Trick: Introduce constant feature &

hg (x(]ueo&@ 402 4+ o) 4+ en:c§3>)
=1

m Represent :z:(j ) with new constant feature

2U) = (17 OO ,xo))

n

(7)

m Rewrite linear relationship using vectors representing mm and 0

h(2V)) = ga(olaidy 6= {00, 07, 0530mm0} . 0; € R

Note: Throughout the rest of the slide, we drop the superscript in a:(j)and y(j) if there is no ambiguity.




In-Lecture Activity (5 mins)

Map ycR tooco1]

IK = ro/ lj

e \We need a squashing function ¢ that maps real numbers to the unit interval,
and where o(0) = 0.5

m Try an online equation

S~

graphing website to

| // N O S O experiment: Desmos

B @




Logistic Regression

e Logistic Regression =¥ Real-valued predictions interpreted as probability
m Function fis the standard Logistic Function (Sigmoid function)

f(z)

L

L=1 k=1, 2og=0

N 1 4 e—klz—w0)

2.00

1.75

1.50

1.25
< 1.00
frt

0.75

0.50

0.25

0.00 -

—— L=2, k=0.5, Xo=-4
—— L=1, k=0, xo=0

-10.0 =75 -5.0 -2.5 0.0 25 50 7.5 10.0
X
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Logistic Regression — Probabilistic Interpretation

e ¢ interpreted as a probability

. 1 .
= ho(z) = f(@ex) = [ with ¢ € [0, 1]

- § = hy(x) is the estimated probability that y = 1 given x and 6
g = Ply=1[z,0)

=» Given only discrete 2 outcomes: P(y = 1|z,0) %+ P(y = 0|z,0) = 1

16



Outline

e (Generative vs. Discriminative Classifiers

e Logistic Regression
m Setup as Probabilistic Classifier
m Cross-Entropy Loss Function
Gradient Descent
Overfitting & Regularization
Multiclass Logistic Regression

e Towards Neural Networks
m Motivation: XOR Problem
m Basic Neural Network Architecture
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Sentiment Analysis, redux

-

The D_Qy The Earth Was Turned Into A Cemetery! §

Now Showing

Movies — The Omicron Variant

“It’s hokey. There are no surprises, the writing is poor. So why was it
so enjoyable? For one thing, the cast is great. Another nice touch is the
music. I was overcome with the urge to get off the couch and start
dancing. It sucked me in, and it’ll do the same to you.”

Photoshopped Fake Vintage Movie

HAEL
w0 MAYO SIMON 1wcovcvs e PAYL B. RADIN ... SAUL BASS . . .
wapeiana PN ’ Poster image courtesy Tribune India




In-Lecture Activity (2 mins)

£ Ak What features have positive or negative weights?

Feature Description Value Weight

Number of positive words +VE

Number of negative words -VE

1 if “no” in text; O otherwise
%~

Number of 1st & 2nd person pronouns 0

1if “I” in text; O otherwise

In of word/token count




Logistic Regression — Runthrough (Part 1)

e Sentiment Analysis for movie reviews

“Featrs | oescrpion

1

X | X | X

X

X | X

“It’s hokey. There are nosurprisesy the writing is poor. So why was it so.enjoyable? For
one thing, the cast isigreat. Anothernice touch is the music. | was overcome with the
urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you.”

Number of positive words
Number of negative words ?
1if “no” in text; 0 otherwise

Number of 1st & 2nd person pronouns

1if “1” in text; O otherwise

In of word/token count

Side notes:

e Naive Bayes and Logistic Regression require
feature engineering as they do not combine
primitive features into composite ones.

e The 6 features on the left are chosen for simplicity;
in practice, these are often tf-idf weighted
vocabulary.

20




Logistic Regression — Runthrough (Part 1)

e Step 1: Extract feature values

“It’s hokey. There are no surprises, the writing is poor. So why was it so enjoyable? For
one thing, the cast is great. Another nice touch is the music. | was overcome with the
urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you.”

“Featurs | puseripion

1

X | X | X

Re

X | X

Number of positive words

Number of negative words

1 if “no” in text; O otherwise

Number of 1st & 2nd person pronouns
1if “1” in text; O otherwise

In of word/token count

n(66) = 4.19

21



In-Lecture Activity

£ % i In-Lecture Activity (5 mins)

e Question: What might be other useful features for a sentiment classifier?
m Bonus: Briefly discuss how easy/difficult it would be to extract your features

e Post your answer to Canvas > Discussions > [In-Lecture Interaction] L1

(Help like other classmate’s responses too! )




Logistic Regression — Runthrough (Part 1)

e Step 2: Factor in weights 6

m Let's assume some oracle gave us those weights

m It's time to include the bias using the “bias trick”

I Notation varies: Weights are also
called parameters, sometimes denoted as
w (as used in the SLP3 textbook)

K T

X XX

X

X

X | X

Bias b

Number of positive words

Number of negative words

1if "no" in text; O otherwise

Number of 1st & 2nd person pronouns

1if "1" in text; 0 otherwise

A Ol Ww =~ N W

In of word/token count 4.

2.5
-5.0
-1.2
0.5
20
0.7

23



Logistic Regression — Runthrough (Part 1)

e Step 4: Compute linear signal (sum of weighted features)

T U

Vector notation:

Bias b

Number of positive words

-

Number of negative words

X (XXX

1if “no” in text; 0 otherwise

=

1if “I” in text; 0 otherwise

X | X

3
2
1
Number of 1st & 2nd person pronouns 3
0
1

In of word/token count 4.

r=(1,3,2,1,3,0,4.19)"

0 = (0.1,2.5, —5.0,

2 0"z =0.833

—1.2,0.5,2.0,0.7)"

2.5
-5.0
-1.2
0.5
20
0.7

7.5
-10.0
-1.2
1.5
0

2.933

%(—/

D =0.833

24



Logistic Regression — Runthrough (Part 1)

e Step 4: Compute probabilities

1 1
P(+]2) = Py =1[2,0) = 0(070) = ——— = 75 = 07

P(—|z) = P(y =0|z,0) =1 — P(y = 1|z,60) = 0.3

U

P(+|z) > 0.5 = =4 (positive)

Classify movie review as “positive”

0" r = 0.833

25




Logistic Regression

e So, where did the values for 6 come from?

(in the example, they were simply given to us)
m Of course, different 6 values would have resulted in different probabilities

e Break down into 2 questions

(1) How can we quantify how goad a set of 6 values is?

=» Loss function (also: cost function, error function)

(2) How can we systematically find the best 6 values?

=» Gradient Descent (numerical method to minimize loss function)

26



Outline

e (Generative vs. Discriminative Classifiers

e Logistic Regression

Setup as Probabilistic Classifier
Cross-Entropy Loss Function
Gradient Descent

Overfitting & Regularization
Multiclass Logistic Regression

e Towards Neural Networks
m Motivation: XOR Problem
m Basic Neural Network Architecture
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Logistic Regression — Loss Function

e |Intuition: A set of values for 6 is good if
m the correct label Y (0 or 1; coming from the dataset)

a the model's estimated label {J = (' 2)

are similar for all (x, y) pairs

-» Find 8 that minimizes the difference between ¥ and

U

L(:&, y) = how much @ differs from Yy

28



Logistic Regression — Loss Function

e Goal: Maximize probability of the correct label P(y|x)

e [ntermediate step: Combine both case into one formula
m P(y\x) is a Bernoulli distribution (2 discrete outcomes)

:& >y:1
Plylx) =
(yl) {1@ =0

= Combine into: | P(y|z) = §¥(1 — Q)l—y

1+e 9

29




Logistic Regression — Loss Function

T 1 qe0e

e Goal: Maximize probability of the correct label P(y|x)

m Find 6 that maximizes P(y]a:) _ gy(l . g)l—y

log P(y|z) = log [¢*(1 — )" 7]

m Find 0 that minimizes

=ylogy+ (1 —y)log (1 —7)

Lep(y,y) = —Plylr) =

N

ylogy + (1 —y)log (1 — @)}j

%

Cross-Entropy Loss

30




Cross-Entropy Loss — Visualization

Lop(@,y) = —[ylogy + (1 —y)log (1 —g)]

ity=1 ity=20
4 4l
3] 3
| -l
2 2
1 14
0 0-
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
¥ =he(x) ¥ =he(x)

31



Cross-Entropy Loss — Runthrough Example (Part 2)
o

T Bias b
P(+|.’L’) - 0(9 ZC) - 07 Number of positive words 2.5 7.5

1
3

X, Number of negative words 2 -5.0 -10.0

P(—|z)=1- U(QT:E) =0.3 X, 1if"no” in text; 0 otherwise 1 12 1.2

Number of 1st & 2nd person pronouns 3 0.5 1.5

0

1

1 if "I" in text; O otherwise 2.0 0

In of word/token count 4.19 0.7 2.933

Lop(@,y) = —[ylogy + (1 —y)log (1 —g)]

Assume the model was right (yy = 1) Assume the model was wrong (y = ()

L U

Lop(y,y) =777 Lop(g,y) =777



Cross-Entropy Loss — Runthrough Example (Part 2)

P(+|z)=0(0'2) =0.7

P(~|e) =1~0(8z) = 0.3 Lep(y,y) = —lylogy + (1 —y)log (1 — y)]
Assume the model was right (yy = 1) Assume the model was wrong (y = ()
L -
Lep(y,y) = —[logy] Lep(y,y) = —[log(1 —9),
—[log 0.7] —[log 0.3]

= ().36

p—

2

33



Cross-Entropy Loss — Total Loss

e Loss for all training SampleS (given m data samples)

m

1 (] ; m training samples. Average over all m samples
Lop = EZ Lop <y(‘7>,y(]))
j=1
1 : ‘ .
= — U(]> log Q(]) + (1 — 7/(‘7)) log (1 — Q(]))} spell out the cross entropy loss
j=1
1 . :
= y W log o (QTT(])) + (1 — ym) log <1 —0 (6’T.7:<J)))
1=1
Lo~ 1 - 1
- 7) _ (.7)) o1—
m 2 |V loe A | (1 v ) log (] I emm)

34



Outline

e (Generative vs. Discriminative Classifiers

e Logistic Regression

Setup as Probabilistic Classifier
Cross-Entropy Loss Function
Gradient Descent

Overfitting & Regularization
Multiclass Logistic Regression

e Towards Neural Networks
m Motivation: XOR Problem
m Basic Neural Network Architecture
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Learning — Minimizing the Loss Function

m

1 , 1 ,
_ _E (4) - - )
LCE—_m lyﬂ log1+eeu<a‘> +(1_?/J)10g<1_

Jj=1

Visual illustration of loss function

e Just 1 feature 0 and bias 6 | \

e Good news: L for Logistic Regression 1
is a convex function =» 1 global minimum

=» How to find the minimum of L5 ?

...this should cause a flashback to your calculus classes :)

1

1+ 072

)

730000
25000
20000
115000
110000
" 5000
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Method 1: Random Search wne “stupie” way)

e Repeat “enough” times
m Select random values for § = {0y, 61,65, ...,0,}

m Calculate loss L for current ¢

Plot of 1,000 losses

e Return 6 with smallest loss

e Limitation:

m Not practical beyond toy examples

=» Don’t do that! :)




MethOd 2: USing Ca|cll|lIS (the proper way)

e Minimum of loss function L =» Calculus to the rescue!
m Partial derivatives with respect to to all f;are 0

oL oL oL oL
=0, — =0, = =0, ..., == =0
90, 00, 06, o0,
m n+1 equations with n+1 unknowns \
(=» 1 unique solution =» 1 global minimum)

oL
=»> What we need: ——

130000
25000
20000

38



Loss Function — Derivatives

m

1 : : . .
_ ©)) T..0) _ @) _ T.0)
Leg - E [y logo (0" x ) + (1 Yy )log (1-0(0'x ))]

o -

...lots of tedious math here...

e

oL 1 . , .
aeciE == Z [0 (ng(J)) _ y(J)] x,f.j)

Basic approach to find the minimum
(1) Set derivative to 0 = %XT [0 (X0) —y] =0
(2) Solve for #

So are we done here?

39



Gradient Descent

1 ! :
e Problem: —X' [0 (X#) — y] = 0 has no closed-form solution for 0
m,

=» Gradient Descent
m Start with a random setting of 0

m Adjust 9 iteratively to minimize L

' 40
o, 3 4 20 00

40



Gradient — Quick Refresher

e Gradient
m Vector of partial derivatives of a multivariable function (e.g., 0, 0., ..., 0,)

m Partial derivative: slope with respect to a single variable
given a current set of values for all 0p 0y ..y 0

m Points in the direction of the steepest ascent

.
90,
L

001
oL

o0,
oL
00




Gradients — Runthrough Example (Part 3)

e Calculate Gradients @ssumingy = 1)

(‘9L0E 1
_ T
= —X [0(X0) -y
00 m
Bias b -0.30 —0.30
X, Number of positive words 3 2.5 7.5 -0.91 —0.91
—0.61
X, Number of negative words 2 -5.0 -10.0 -0.61
e : 2> VyLogp=|-0.30
X, 1if “no” in text; 0 otherwise 1 -1.2 -1.2 -0.30 0.91
X, Number of 1st & 2nd person pronouns 3 0.5 1.5 -0.91 0.0
X 1if “I” in text; 0 otherwise 0 2.0 0 0.0
5 | —1.27
X In of word/token count 4.19 0.7 2.933 -1.27

42




Gradients — Runthrough Example (Part 3)

e Interpretation of gradients
m Negative values: a small increase in, e.g., 6, 0r 0, will decrease the loss

m Asmall change in 0, affects the loss more than the same change in 6,
(since the absolute value of 6, is larger than the one of 6,))

m Absolute values of gradient not a direct indicator of how to update 6

=» So how do we adjust 0 to decrease the loss? —0.91

—0.61
VoLop = |—0.30
—0.91
0.0
—1.27

—0.30]

43



Gradient Descent Algorithm

e |mportant concept: learning rate
m Scaling factor for gradient (typical range: 0.01 - 0.0001)

Input : data (X, y), loss function L, learning rate n

Initialization : Set 0 to random values

while true
Calculate gradient VgL

@%Q—(U-VQL)

In practice: stop loop
when 0 converges

44



Gradient Descent — Runthrough Example (Part 4)

e Update weights 6

m Learningrate: n = 0.1

(9(—6—(77°V9L)

Description Partial New Weight 6,
derivatives
X, Bias b 1 0.1 0.1 -0.30 0.13
X, Number of positive words 3 2.5 7.5 -0.91 2.59
X, Number of negative words 2 -5.0 -10.0 -0.61 -4.94
X, 1 if “no” in text; O otherwise 1 -1.2 -1.2 -0.30 -1.17
X, Number of 1st & 2nd person pronouns 3 0.5 1.5 -0.91 0.59
X 1if “I” in text; 0 otherwise 0 2.0 0 0.0 2.0
Xg In of word/token count 419 0.7 2.933 -1.27 0.83
—
~~
=» 1st iteration of Gradient Descent done! Lop =0.12
(down from 0.36)

45



Gradient Descent — Runthrough Example (Part 4)

e Update weights 6

m Learningrate: n = 0.1

6(—6—(77-V9L)

Description Weight 6, 6x,  Partial derivatives New Weight 6,

X, Bias b 1 0.13 0.13 -0.11 0.14
X, Number of positive words 3 2.59 7.77 -0.33 2.62
X, Number of negative words 2 -4.94 -9.88 -0.22 -4.92
X5 1if "no" in text; O otherwise 1 -1.17 -1.17 -0.11 -1.16
X, Number of 1st & 2nd person pronouns 3 0.59 1.77 -0.33 0.62
Xg 1if "I" in text; O otherwise 0 20 0 0.0 2.0

Xg In of word/token count 4.19 0.83 3.46 -0.46 0.87

<
=» 2nd iteration of Gradient Descent done! Logp =0.075

(down from 0.12)
46



In-Lecture Activity (2 mins)

£ i i Quick Quiz

What happens if
Logistic Regression gets a
training sample correct?

A
B
C
D

[ No loss will be calculated }

The loss will be 0

The loss will be small

The loss will be large




100

80 1

60 -

-

401
20
ol
-10.0 -7.5 -5.0 -2.5 00 25 50 7.5 10.0
100
80 1
60 -
401
20 1

0.
-10.0 -7.5 -5.0 -2.5 00 25 50 7.5 10.0

n=0.2

X

-

-]

100
80 1
60 |
40 1
20 1

0

100 -
80 -
60 -
40
20

O_
-10.0 -7.5 -5.0 -2.5 00 25 50 7.5 10.0

Effects of Learning Rate for . = 22, g—i — 2z, 20 steps

P S
\ S — ———
\ —

n = 1.01

X
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Gradient Descent — Variations

e (Basic) Gradient Descent
m Calculate gradient und update 6 for whole dataset

e Stochastic Gradient Descent (SGD)

m Calculate gradient and update 6 for each data sample

e Mini-batch Gradient Descent
m Calculate gradient and update 6 for batches of sample

m e.g., batch = 64 data samples

m In practice, often still referred to as SGD

0,

3

D

:

S,

[ g



Gradient Descent — Variations

Gradient Descent

\ 130000
‘3 25000
15000

710000
" 5000

100

0 X
20 0o

5 0

Gradient averaged over all data items
e Smooth descent
e Small(er) gradients

e Small(er) update steps

720000
L

Mini-Batch Gradient Descent

\ 30000
3 25000
20000
15000

10000
" 5000

100

a0
20 00

5 0

Gradient averaged over some data items

e Well, “somewhere in-between” :)

Stochastic Gradient Descent

\ 30000
¢ 25000
20000

15000
710000

" 5000

100

0 X
20 0o

5 0

Gradient for each data item considered
e Choppy descent
e Large(r) gradients

e L arge(r) steps
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Outline

e (Generative vs. Discriminative Classifiers

e Logistic Regression

Setup as Probabilistic Classifier
Cross-Entropy Loss Function
Gradient Descent

Overfitting & Regularization
Multiclass Logistic Regression

e Towards Neural Networks
m Motivation: XOR Problem
m Basic Neural Network Architecture
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Gradient Descent — When to Stop?

e [ntuition: VyLog < threshold

Problem: regions of “near-plateaus”:

=» Gradient VgL very small
=» Step nVy L extremely small

-» Very slow convergence

e Alternative stop conditions:
m Loss is small (enough)

m Change in loss is small enough

\ F30000
£ 125000

20000
15000
10000
" 5000

100

Choices of 0 with
almost(!) equal loss

m Max. # iterations reached

Note: This problem is much more pronounced for
non-convex loss functions with multiple local minima

52



In-Lecture Activity (2 mins)

£ A Xk Overfitting

e A model that perfectly matches the training data often has a problem.




In-Lecture Activity (2 mins)

£ A Xk Overfitting

e A model that perfectly matches the training data often has a problem.

It may overfit to the data, modeling noise
o Arandom word that perfectly predicts (it happens to only occur in one class)
will get a very high weight.
o Failing to generalise to a test set without this words.

This movie drew me in, and it'll do the same to you. positive

A gOOd model | can't tell you how much | hated this movie. It sucked. | negative
should be able
to generalise




Overfitting — Intuition (Naive Bayes Classifier)

e Scenario — movie reviews
m (Very) low number of reviews

This movie drew me in, and it'll do the same to you.

| can't tell you how much | hated this movie. It sucked.
m NB classifier based on 4-grams

=» Effect of Naive Bayes classifier

e Each 4-gram most likely unique and associated with only 1 class
(e.g., "tell you how much" only found in a negative review)

e Unseen positive review ' containing “tell you how much” = P(positive|z) = (

positive

negative
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Overfitting — Intuition (Logistic Regression Classifier)

e Scenario — movie reviews

Bias b

[ ] (Very) low number of reviews X, Number of positive words 3 25 75
X, Number of negative words 2 -5.0 -10.0

u Assume the fO"OWIng artlfaCt X, 1if “no” in text; O otherwise 1 -1.2 -1.2
All positive reviews contain many pronouns X, | Number of 1st & 2nd person pronouns 3 o550 15

. . . X5 1if “I” in text; O otherwise 0 2.0 0

Almost no negative reviews contain pronouns

Xg In of word/token count 4.19 0.7 2.933

=» Effect of Logistic Regression classifier

e Classifiers over-emphasizes the importance of pronouns
=» large value for 4, (compared to other ¢, )

e Unseen negative review with many pronouns will most likely be misclassified
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Overfitting — Basic Intuition

e Overfitting — Visualized using curve fitting

m Task: Find a polynomial for degree p that best fit the data points

p=1

-~
L
-
o

Underfitting

e Polynomial of degree 1 just a line

e Not capable to fit non-linear data

p=2
N
\
\
\ X
\\
7
>>\ Xx b4 //
\\\ y 3
X 7’
X\\\ X X />9
X e X ’,x/
e
x X
Good fit

e Model captures the overall trend

e Probably good fit for unseen data

p=8
\
\
\
\
X
\
\
>\\ ><>< ,‘K
N ’ “
\__\ X x
~ 1
. e ¥ X%l 1
X N // 1
X m g ]
X 3 X 1
1
1
]
1
1
Overfitting

e Model has too much capacity to
exactly fit individual data points

e Probably bad fit for unseen data
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Regularization

e Observation

. Quick Quiz: What do the indices m
and n stand for in the equations here?

m Model “too powerful” & (very) large 0 values

=*» Regularization: Penalize large 6 values
e Extend loss function by penalty term

e For example, for Cross-Entropy loss

L= _% S [y logo (0729) + (1= y@) log (1— o (0T2))] +1 S 02
s i=1

I _% Y [y oga (072P) + (1 yP)log (1= (072D))] +X > |6)
P i=1

\: Regularization Parameter to control
the “strength of the regularization”

make the weights small

L2 Regularization
(“Ridge Regression”)

make the sum of all weights small

L1 Regularization
(“Lasso Regression”)

sparsify 58



New Loss = New Gradient

: . 0L
e Since we change [, the gradient VgL = a0 also changes
m No big deal, regularization is just an added term

m For example, for L2 Regularization (Ridge Regression)

dLce 1 7 2
50 —mX o (X0) y]—l—)\n0

m No changes to Gradient Descent Algorithms
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In-Lecture Activity (4 mins)

£ i i Quick Quiz

It's impossible to overfit given a
dataset with only 1 feature

Scaling the data will change
the values for 6

Which of the statements regarding

Logistic Regression is True? Gradient Descent can get
stuck in local minimum

Regularization can improve
the training loss/error
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m Basic Neural Network Architecture

n
()
S
=

=]
(S]
()

-
o)

£
N
N
[+}]
(3]
(o}
S

o
<)
o)
©
=)
o)
c
(1)

-
)
S
=
=)
©

Z

0

<

AN

<

n

(&)

61



Binary LR = Multiclass LR

e Multiclass LR: Classification beyond 2 classes
m Let's assume we have C classes: c=1..C

m Separate weights 6_ for each classes ¢ = C output probabilities

Binary Logistic Regression Multiclass Logistic Regression
[Py = 1|x) ] (0, 2]
P(y = 2|x) 0y x
P(y=1lz)=0(0z) C—=p = fgstery | | -
| P(y = Clx)_ 24
N ~ J

Probabilities need

=» How can we ensure that?
tosumupto1
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/ mystery =¥ Softmax

e Softmax function

m Converts any vector of scores
into a vector of probabilities

Py = 1|)
Py = 2|z)
Py =Clx)

Py = c[z)
1
¢ T
Zizl exp (0; x)

exp(f. x)

B Zil exp(6,' x)

exp (0] @)

N—

exp (0, x

lexp (0.x)
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Exampl

e Example with 4 classes and 3 input features

Weight matrix ¢

[0.55 0.71 0.29]
0.51 0.89 0.90

0.13 0.21 0.05]

10.44 0.03 0.46 |

0" 1

[ 0.009 ]
0.244
0.005

Softmax

| —0.032,

[0.238]
0.296
0.237

10229

U1
Y2
(I
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Cross-Entropy Loss

Cross-Entropy Loss for Binary Logistic Regression

Lop(W,y) = —[ylogy + (1 —y)log (1 — )]

Generalized Cross-Entropy Loss for Multiclass Logistic Regression

probability output after Softmax

Lop(y Z Yi log

yz =1 for correct class, 0 otherwise

New gradient VL but beyond the scope here.
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Writing Systems of the World

— each symbol is a X414

Word Is_y(?l?aoble or an entire concept (e.g. e
3 ’ 7N

Syllabaries — each syllable Ad1A NIAT
Syllable 2consqngnt + vowel) a symbol v l N / \
(O=YR2Y ABCD ! ABMA  NATT
gidas — each consonant is a “ ABMA ™ s

base symbaql, vowels permute
them ( LL%Q) P

bets — each sound a symbol

Sound (pyccknmnz)
bjads — each consonant a

symbol, vowels inferred from
context (n"ay)

loz o
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Pre-Lecture Activity from Last Week

Pre-Lecture Activity from Last Week

e Assigned Task

m Post a 1-2 sentence answer to the following question into your Tutorial Group’s discussions
(you will find the thread on Canvas > Discussions)

“‘What is a common myth about neural networks?”

Side notes:
e This task is meant as a warm-up to provide some context for the next lecture
e No worries if you get lost; we will talk about this in the next lecture
e You can just copy-&-paste others' answers, but his won't help you learn better




Pre-Lecture Activity from Last Week

A common misconception of neural networks is that they
are models of the brain, despite what their name alludes to.
Neural network resembles a graph while the brain resembles
a structured network.

Q Search

picture from TuringFinance.com

Do neural networks really work like
neurons?

Yariv Adan - Follow
Published in The Startup - 11 minread - Sep 29,2018

Artificial Neural Network and Machine Learning have become hot topics in

Qa4 We® O

§ «

the popular media. The idea of intelligent machines captivates the
imagination of many, and especially how they would compare to humans.
Specifically, one fundamental question that seems to come up frequently is
about the underlaying mechanisms of intelligence — do these artificial
neural networks really work like the neurons in our brain?

Tl; Dr:

No. While the high level and conceptual thinking of ANNs (artificial neural
networks) is inspired by neurons and neural networks in the brain , the ML
implementation of these concepts has diverged significantly from how the
brain works. Moreover, as the field of ML progressed over the years, and

Neural Networks are always thought of mimicking a human
brain and are capable of learning like humans which isn't
true since we can learn from a

neural networks which require!

A common myth about neural networks is that they are
black boxes - meaning their inner workings and decision-
making processes are entirely uninterpretable. However,
there's ongoing research and development of methods, (eg.
sensitivity analysis), aimed at enhancing their
interpretability and making their operations more
transparent.

https:/prometheuz.de/en/ai/are-neural-networks-black-
boxes/#can-we-understand-how-a-neural-network-makes-
decisions

Not sure if this counts as a myth, but when | first started

out with neu ing in general),
| did not thin as that

important.

owever, the quality and reliability of neural networks
eavily depend on thorough data cleaning/preprocessing
his process is crucial for extracting useful and unbiased
patures.

Neural networks can and should be applied to any and all




Biological Inspiration — Neuron

“Inputs” of the neuron

/ Aggregates all inputs
Dendrite

Ranvier
Cell body

Myelin sheath
Nucleus

Axon Terminal
Node of

Schwann cell

Axon Hillock “Fires” if aggregated
inputs exceed a threshold

Source: Wiki Common (CC BY-SA 3.0): neuron

4 Cell body D )
XO
X1
X, Y
\ Axon Hillock [}
X
N [

Dendrites

=» Logistic Regression (crudely) a biological neuron
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Logistic Regression — Limitations

e Logistic Regression is @,linear model

m Limited to linear combination of features
(and a non-linear mapping to a probability)

m Limited to linear decision boundaries
(i.e., lines, planes, hyperplanes)

e \What if we want or need to represent.nen=linear
relationships between features? We can't!

=» Scale up: “Stacked’ Logistic Regression
m Feed inputinto multiple neurons (i.e., LR units)

m Use output of neurons as input for other neurons
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XOR

Follow along yourself!
https://www.desmos.com

[calculator/waert4utde

OR
o o
\\ -
N
N
N
N
N
N
N
N
N
\\\ .
Y
AY
0 1
&

0
0
1
1

X

Aol al o

= = =2 o

0
0
0
1

X% | % | OR | AND | NAND | XOR |

1 0
1 1
1 1
0 0
XOR
o
77?77
@
0
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XOR

e Learning OR, AND, and NAND

m Finding correct weights simply by “looking hard” 1 ,if0Tz>0
(the weights are not unique; there are many ways to set 9) f e =
step
m The activation function is the Step Function, not Sigmoid 0 ,otherwise

(strictly speaking, this makes it a Perceptron not a Linear Regression unit)
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XOR ENENERE
0 0 0 0 1 0
0 1 1 0 1 1
e Deriving XOR from simple classifiers 1 0 1 0 1 1
m Note: this is not only way to do it, just convenient 1 1 1 1 0 0
OR NAND XOR
1 ® o 1le ~ e 1o ~ e
0/ ® @ (AND) 0 o ® 0/ ® e
0 1 0 1 0 1

=» Cool, we know how to do ORs, ANDs and NANDs!
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XOR

e Modeling XOR by “stacking” LR units =» Neural Network (NN)

m More specifically, a Feedforward NN (i.e., network contains no loops)

»XOR(X1,X2)
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Network Gapacity — Intuition

Quick quiz: Is there any harm
in having too many neurons?

Note: The activation function is the Sigmoid, hence the smooth decision boundaries
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A Neural Network (Feedforward NN)

e Example: L-layer Feedforward Neural Network (nere: L = 4)

\//p&&
A A\
i 3}\ kz:gl‘ﬂ
N "\
e =

H_J

Output
layer

} hg(x)
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- layer [
Neural Network — Indices |
d!) = # neuronsfunits in layer | 8 [l]
ol = (a1 4 1) . ¢l = # weights for layer | 1,1
Nodes / Units / Neurons / \
Index of neuron in layer [ Index of neuron in layer [ — 1

1<i<dl 0<i<dl-ll
Weights

"‘«\ o
44

‘vv \'\<
«\
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Neural Network — Activations

N N
}"/{”}}»“YWL
i dpyct Ve
L1 '*2‘@' <

“'
’/A

3

| ol =g (634 + 61 + Ohhes + 0y )
-_— e ==

3 3 31 12 31 9 -
| @9% + 0510 + 05hal + 058
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Neural Network — Activations

e |ayer-wise computations
a Let 2 be the output of layer [

0]

n :17[ — x — initial input

n o= h(x) — final output

e \ectorized form

m Calculate xm in practice “in one go”
m Everything becomes matrix* operations

m GPUs: hardware-supported processing
of matrix operations (+ parallelism)

*strictly speaking: tensor operations (tensor = n-dimensional arrays)

d[l 1]
! :g ol U]

i,
Jj=0

_y ([9{1} 56[1—11)

Weight vecto 0“ € Rd

olll = all = g (61111-1)

Weight matrix gl] ¢ pe"xd'™"
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Neural Network — Activation Functions

e Wide range of activation functions

Sigmoid
e Activations functions for hidden layers /
m Do not need to have a probabilistic interpretation
m Only requirement: non-linear function!
m Examples: max (0.x) LY A
Sign Tanh ReLU Leaky RelLU
—1-90-_0:75 :1:22 2 =) 2 4 M : !

RelLU = Rectified Linear Unit



Neural Network — Activation Functions

e Activations functions for output layers

m Choice of activation function depending on task
(mainly: classification or regression)

m Examples:

Linear function for regression tasks Sigmoid function for classification tasks

1.0
0.8

0.6

0,

0.2




Example

Input ¥ Hidden /; Output y
h — . 4%3
= gj, (0px) , with 8, € R

y = gy (04h) , with 6, € R**

gn, gy : suitable activation functions

0.55 0.710.29] ¢ 0.009 0.009 0.009
0.51 0.89 0.90 ‘ 0.244 0.244 0.65 0.28 0.68 0.59] {0244  [0.078 0.48
0.13 0.21 0.05 [8;} ~ | 0.005 ReLUOwe) = 1 05 E> [0.02 0.56 0.26 0.42]' 0.005| ~ [0.138} E> Softmaz(6yh) = [0.52]
0.44 0.03 0.46] L ~0.032 0 0
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Neural Networks

N

<X

AV
VSl
1 N/AN®. x \\

Depth = number of layers

/,g\.v Y

CONER N




From Logistic Regression to (Deep) Neural Networks

e Fundamentally, nothing new here:
m Aneural network is a function hy(x)

m Define a loss function L = L(y,y) = L(y, hy(z))

m Perform Gradient Descent to minimize L

e Difference: increased complexity
m hg(x) and thus L(y, hy(x)) are much more complex functions

m Calculation of g—g much more challenging =» backpropagation

m L is no longer a convex function =¥ local minima =¥ training more challenging

m Overfitting becomes a bigger issue
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Summary

e Linear model: Logistic Regression
m Very important probabilistic classifier

m Discriminative classifier =» linear decision boundaries

m Core unit of neural networks

e “Stacked” Logistic Regression =¥ Neural Network
m Neuron = Linear Regression unit

m Non-convex loss function =¥ global minimum vs. local minima

m Higher risk of overfitting =» regularization crucial (but also other methods)
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Pre-Lecture Activity for Next Week

Pre-Lecture Activity for Next Week

e Assigned Task (due before Feb 23)

m Post a 1-2 sentence answer to the following question in your Tutorial Group’s discussion
(you will find the thread on Canvas > Discussions)

“What do we mean by sparse or dense vectors?
Are documents characterised by tf-idf sparse or dense?”

Read some blog posts or online articles, and cite them with the links in your answer

Side notes:
e This task is meant as a warm-up to provide some context for the next lecture
e No worries if you get lost; we will talk about this in the next lecture
e You can just copy-&-paste others' answers but this won't help you learn better




