

CS4248: Natural Language Processing

Lecture 5 — Introduction into Connectionist Machine Learning

Announcements

- Extension to Assignment 1; Delay of Assignment 2
 - Assignment 2 will be a Text Classification competition, restricted to ML algorithms taught (Naive Bayes and Logistic Regression)
 - Emphasis on Natural Language Feature Engineering

- Project's Intermediate Update Rubric / Template is available
 - Find in Canvas >> Files >> Project
 - Live version (best bet) at https://bit.ly/cs4248-2220-iu-template

Outline

Generative vs. Discriminative Classifiers

- Logistic Regression
 - Setup as Probabilistic Classifier
 - Cross-Entropy Loss Function
 - Gradient Descent
 - Overfitting & Regularization
 - Multiclass Logistic Regression
- Towards Neural Networks
 - Motivation: XOR Problem
 - Basic Neural Network Architecture

Text Classification (well, for classification, in general)

- Formal setup
 - lacksquare X set of all documents; $x \in X$ a single document
 - lacksquare Y set of all classes (or class labels); $y \in Y$ a single class (or class label)
 - Mapping h from input space X to output space $Y \rightarrow h: X \rightarrow Y$
 - ightharpoonup Find best \hat{h} to approximate the true mapping h

We find \hat{h} by <u>learning</u> \hat{h} from the data

→ Supervised (Machine) Learning

Probabilistic Classifiers (e.g., Naive Bayes)

Instead of $\hat{h}: X \to Y$, learn $\hat{P}(Y|X)$ (or $\hat{P}(y|x)$ for an $\langle x,y \rangle$ pair)

Text Classification — Probabilistic Classifiers

- Common goal: Learn P(y|x)
 - Learn P(y|x) from the data
- Two basic approaches
 - (1) Generative Classifiers
 - Learn joint probability P(x,y)
 - lacktriangle Apply Bayes Rule to get P(y|x)
 - (2) Discriminative Classifiers
 - Learn P(y|x) directly

$$= P(x,y) \propto P(y|x)$$

$$\Rightarrow \hat{y} = \underset{y \in Y}{\operatorname{argmax}} P(x|y)P(y)$$

$$\hat{y} = \underset{y \in Y}{\operatorname{argmax}} P(y|x)$$

Generative vs. Discriminative Classifiers — Intuition

Task: Train a classifier to distinguish zebra from elephants images

Generative vs. Discriminative Classifiers — Intuition

Generative classifier

■ Builds 2 models what zebra and elephant images look like

Feature x _i	P(x _i , zebra)	P(x _i , elephant)
"is grey"	0.32	0.95
"is striped"	0.99	0.08
"long nose"	0.40	0.98
"four legs"	0.88	0.99

- Models allow to assign a "zebra probability" and an "elephant probability" to any image (using Bayes Rule)
- Givan a new image:
 Run both models and see which fits better

Generative vs. Discriminative Classifiers — Intuition

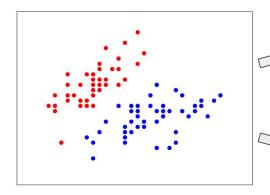
- Discriminative classifier
 - Tries to distinguish zebra and elephant images
 - Does not model how zebra and elephant images "look like"

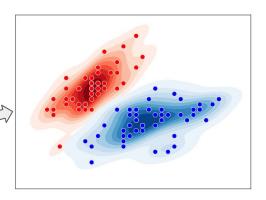
Question: How could we quickly distinguish zebras from elephants?

Generative vs. Discriminative Classifiers

Generative classifier

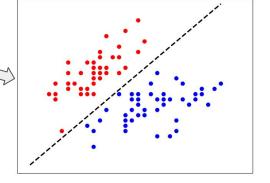
- Learn data distribution of each class
- Classifies new data item by comparing the item with each class distribution





Discriminative classifier

- Learn the decision boundaries between classes
- Classifies new data item based on in which "region" the new item falls



Outline

Generative vs. Discriminative Classifiers

Logistic Regression

- Setup as Probabilistic Classifier
- Cross-Entropy Loss Function
- Gradient Descent
- Overfitting & Regularization
- Multiclass Logistic Regression

Towards Neural Networks

- Motivation: XOR Problem
- Basic Neural Network Architecture

Linear Models

- Underlying assumption:
 - lacktriangle There exists linear relationship between $x^{(j)}$ and dependent variable $y^{(j)}$

$$\hat{y}^{(j)} = h_{\theta}\left(x^{(j)}\right) = f\left(b + \theta_1 x_1^{(j)} + \theta_2 x_2^{(j)} + \dots + \theta_n x_n^{(j)}\right)$$
 Predicted value which is hopefully close to $y^{(j)}$
$$= f\left(\left[\sum_{i=1}^n \theta_i x_i^{(j)}\right] + b\right)$$

$$\theta = \{b, \theta_1, \theta_2, \dots, \theta_n\}, b \in \mathbb{R}, \theta_i \in \mathbb{R}$$

These are the parameters we need to learn

→ Learning = finding the "right" parameter values

Linear Models — More User-Friendly Notation

- Vector representation
 - Bias Trick: Introduce constant feature $x_0^{(j)}$

$$h_{\theta}\left(x^{(j)}\right) = f\left(\theta_{0}\underline{x_{0}^{(j)}} + \theta_{1}x_{1}^{(j)} + \theta_{2}x_{2}^{(j)} + \dots + \theta_{n}x_{n}^{(j)}\right)$$

lacktriangle Represent $x^{(j)}$ with new constant feature

$$x^{(j)} = \left(1, x_1^{(j)}, x_2^{(j)}, \dots, x_n^{(j)}\right)$$

 \blacksquare Rewrite linear relationship using vectors representing $x^{(j)}$ and θ

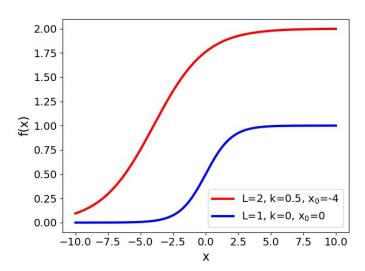
$$h\left(x^{(j)}\right) = f\left(\theta^T x^{(j)}\right)$$
 $\theta = \{\theta_0, \theta_1, \theta_2, \dots, \theta_n\}, \ \theta_i \in \mathbb{R}$

Note: Throughout the rest of the slide, we drop to superscript in $x^{(j)}$ and $y^{(j)}$ if there is no ambiguity.

Logistic Regression

- Logistic Regression → Real-valued predictions interpreted as probability
 - Function *f* is the standard **Logistic Function** (Sigmoid function)

$$f(x) = \frac{L}{1 + e^{-k(x - x_0)}} \xrightarrow{L = 1, \ k = 1, \ x_0 = 0} f(x) = \frac{1}{1 + e^{-x}}$$



Logistic Regression — Probabilistic Interpretation

ullet \hat{y} interpreted as a probability

$$\hat{y} = h_{\theta}(x) = f(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}} \qquad \text{with} \quad \hat{y} \in [0, 1]$$

 $\Rightarrow \hat{y} = h_{\theta}(x)$ is the estimated probability that y = 1 given x and θ

$$\hat{y} = P(y = 1 | x, \theta)$$

 \rightarrow Given only discrete 2 outcomes: $P(y=1|x,\theta)+P(y=0|x,\theta)=1$

$$\hat{y} = 1 - P(y = 0|x, \theta)$$

Outline

Generative vs. Discriminative Classifiers

Logistic Regression

- Setup as Probabilistic Classifier
- Cross-Entropy Loss Function
- Gradient Descent
- Overfitting & Regularization
- Multiclass Logistic Regression

Towards Neural Networks

- Motivation: XOR Problem
- Basic Neural Network Architecture

Sentiment Analysis for movie reviews

"It's hokey. There are no surprises, the writing is poor. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you."

Feature	Description	Value
X ₁	Number of positive words	
X ₂	Number of negative words	
X ₃	1 if "no" in text; 0 otherwise	
X ₄	Number of 1st & 2nd person pronouns	
X ₅	1 if "!" in text; 0 otherwise	
<i>x</i> ₆	In of word/token count	

Side notes:

- Naive Bayes and Logistic Regression require feature engineering as they do not combine primitive features into composite ones.
- The 6 features on the left are chosen for simplicity;
 in practice these can be the tf-idf weights

Step 1: Extract feature values

"It's hokey. There are no surprises, the writing is poor. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you."

Feature	Description	Value	
<i>X</i> ₁	Number of positive words	3	
<i>x</i> ₂	Number of negative words	2	
<i>X</i> ₃	1 if "no" in text; 0 otherwise	1	
X ₄	Number of 1st & 2nd person pronouns	3	
<i>X</i> ₅	1 if "!" in text; 0 otherwise	0	
<i>x</i> ₆	In of word/token count	In(66) = 4.19	

In-Lecture Activity (5 mins)

- Step 2: Factor in weights θ
 - Let's assume some oracle gave us those weights
 - It's time to include the bias using the "bias trick"

Feature	Description	Value	Weight θ_i
x ₀	Bias b	1	0.1
X ₁	Number of positive words	3	2.5
x ₂	Number of negative words	2	-5.0
<i>X</i> ₃	1 if "no" in text; 0 otherwise	1	-1.2
X ₄	Number of 1st & 2nd person pronouns	3	0.5
X ₅	1 if "!" in text; 0 otherwise	0	2.0
<i>X</i> ₆	In of word/token count	4.19	0.7

Step 4: Compute linear signal (sum of weighted features)

Feature	Description	Value	Weight θ_i	$\theta_i x_i$
<i>x</i> ₀	Bias b	1	0.1	0.1
X ₁	Number of positive words	3	2.5	7.5
X ₂	Number of negative words	2	-5.0	-10.0
X ₃	1 if "no" in text; 0 otherwise	1	-1.2	-1.2
X ₄	Number of 1st & 2nd person pronouns	3	0.5	1.5
X ₅	1 if "!" in text; 0 otherwise	0	2.0	0
<i>X</i> ₆	In of word/token count	4.19	0.7	2.933

Vector notation:

$$\begin{cases} x = (1, 3, 2, 1, 3, 0, 4.19)^T \\ \theta = (0.1, 2.5, -5.0, -1.2, 0.5, 2.0, 0.7)^T \end{cases} \Rightarrow \theta^T x = 0.833$$

$$\sum = 0.833$$

Step 4: Compute probabilities

$$P(+|x) = P(y = 1|x, \theta) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}} = \frac{1}{1 + e^{-0.833}} = 0.7$$

$$P(-|x) = P(y = 0|x, \theta) = 1 - P(y = 1|x, \theta) = 0.3$$

$$P(+|x) > 0.5$$
 \Rightarrow $\hat{y} = +$ (positive)

Classify movie review as "positive"

Logistic Regression

• So, where did the values for θ come from?

(in the example, they were simply given to us)

- \blacksquare Of course, different θ values would have resulted in different probabilities
- Break down into 2 questions
 - (1) How can we quantify how good a set of θ values is?
 - → Loss function (also: cost function, error function)

- (2) How can we systematically find the best θ values?
 - → **Gradient Descent** (numerical method to minimize loss function)

Outline

Generative vs. Discriminative Classifiers

Logistic Regression

- Setup as Probabilistic Classifier
- **■** Cross-Entropy Loss Function
- Gradient Descent
- Overfitting & Regularization
- Multiclass Logistic Regression

Towards Neural Networks

- Motivation: XOR Problem
- Basic Neural Network Architecture

Logistic Regression — Loss Function

- Intuition: A set of values for θ is good if
 - the correct label \mathcal{Y} (0 or 1; coming from the dataset)
 - \blacksquare the model's estimated label $\hat{y} = \sigma(\theta^T x)$

are similar for all $\langle x, y \rangle$ pairs

ightharpoonup Find heta that minimizes the difference between \hat{y} and y

 $L(\hat{y},y)$ = how much \hat{y} differs from y

Logistic Regression — Loss Function

 $\hat{y} = \frac{1}{1 + e^{-\theta^T x}}$

ullet Goal: Maximize probability of the correct label $\,P(y|x)\,$

$$\hat{y} = P(y = 1|x, \theta) = 1 - P(y = 0|x, \theta)$$

- Intermediate step: Combine both case into one formula
 - \blacksquare P(y|x) is a Bernoulli distribution (2 discrete outcomes)

$$P(y|x) = \begin{cases} \hat{y} & , y = 1 \\ 1 - \hat{y} & , y = 0 \end{cases}$$

$$ightharpoonup$$
 Combine into: $P(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$

Logistic Regression — Loss Function

$$\hat{y} = \frac{1}{1 + e^{-\theta^T x}}$$

- ullet Goal: Maximize probability of the correct label $\,P(y|x)\,$
 - \blacksquare Find θ that **maximizes**

$$P(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}$$

$$\log P(y|x) = \log \left[\hat{y}^y (1 - \hat{y})^{1-y} \right]$$

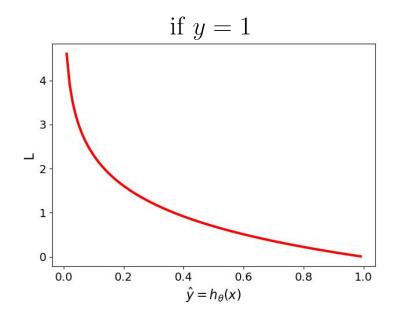
$$= y \log \hat{y} + (1 - y) \log (1 - \hat{y})$$

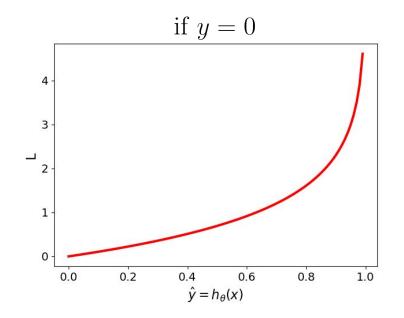
 \blacksquare Find θ that minimizes

$$L_{CE}(\hat{y},y) = -P(y|x) = -\left[y\log\hat{y} + (1-y)\log\left(1-\hat{y}\right)\right]$$
 Cross-Entropy Loss

Cross-Entropy Loss — Visualization

$$L_{CE}(\hat{y}, y) = -\left[y \log \hat{y} + (1 - y) \log (1 - \hat{y})\right]$$





Cross-Entropy Loss — Runthrough Example (Part 2)

Recall:

$$P(+|x) = \sigma(\theta^T x) = 0.7$$

$$P(-|x) = 1 - \sigma(\theta^T x) = 0.3$$

Feature	Description	Value	Weight θ_i	$\theta_i x_i$
x _o	Bias b	1	0.1	0.1
X ₁	Number of positive words	3	2.5	7.5
x ₂	Number of negative words	2	-5.0	-10.0
<i>x</i> ₃	1 if "no" in text; 0 otherwise	1	-1.2	-1.2
X ₄	Number of 1st & 2nd person pronouns	3	0.5	1.5
<i>X</i> ₅	1 if "!" in text; 0 otherwise	0	2.0	0
<i>x</i> ₆	In of word/token count	4.19	0.7	2.933

$$L_{CE}(\hat{y}, y) = -\left[y \log \hat{y} + (1 - y) \log (1 - \hat{y})\right]$$

Assume the model was right (y = 1)

$$L_{CE}(\hat{y}, y) = ???$$

Assume the model was wrong (y = 0)

$$L_{CE}(\hat{y}, y) = ???$$

Cross-Entropy Loss — Runthrough Example (Part 2)

$$P(+|x) = \sigma(\theta^T x) = 0.7$$

$$P(-|x) = 1 - \sigma(\theta^T x) = 0.3$$

$$L_{CE}(\hat{y}, y) = -\left[y \log \hat{y} + (1 - y) \log (1 - \hat{y})\right]$$

Assume the model was right (y = 1)

$$L_{CE}(\hat{y}, y) = -[\log \hat{y}]$$
$$= -[\log 0.7]$$
$$= 0.36$$

Assume the model was wrong (y = 0)

$$L_{CE}(\hat{y}, y) = -[\log(1 - \hat{y})]$$

= $-[\log 0.3]$
= 1.2

Cross-Entropy Loss — **Total Loss**

Loss for all training samples (given m data samples)

$$\begin{split} L_{CE} &= \frac{1}{m} \sum_{j=1}^{m} L_{CE} \left(\hat{y}^{(j)}, y^{(j)} \right) \\ &= -\frac{1}{m} \sum_{j=1}^{m} \left[y^{(j)} \log \hat{y}^{(j)} + \left(1 - y^{(j)} \right) \log \left(1 - \hat{y}^{(j)} \right) \right] \\ &= -\frac{1}{m} \sum_{j=1}^{m} \left[y^{(j)} \log \sigma \left(\theta^{T} x^{(j)} \right) + \left(1 - y^{(j)} \right) \log \left(1 - \sigma \left(\theta^{T} x^{(j)} \right) \right) \right] \\ &= -\frac{1}{m} \sum_{j=1}^{m} \left[y^{(j)} \log \frac{1}{1 + e^{\theta^{T} x^{(j)}}} + \left(1 - y^{(j)} \right) \log \left(1 - \frac{1}{1 + e^{\theta^{T} x^{(j)}}} \right) \right] \end{split}$$

Outline

Generative vs. Discriminative Classifiers

Logistic Regression

- Setup as Probabilistic Classifier
- Cross-Entropy Loss Function
- Gradient Descent
- Overfitting & Regularization
- Multiclass Logistic Regression

Towards Neural Networks

- Motivation: XOR Problem
- Basic Neural Network Architecture

Learning — Minimizing the Loss Function

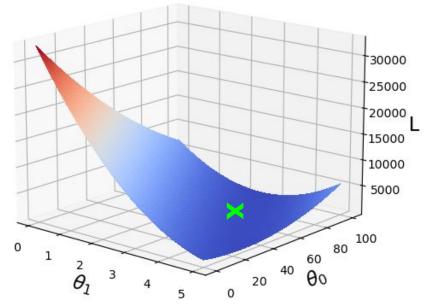
$$L_{CE} = -\frac{1}{m} \sum_{j=1}^{m} \left[y^{(j)} \log \frac{1}{1 + e^{\theta^{T} x^{(j)}}} + \left(1 - y^{(j)} \right) \log \left(1 - \frac{1}{1 + e^{\theta^{T} x^{(j)}}} \right) \right]$$

Visual illustration of loss function

- Just 1 feature θ_1 and bias θ_0
- Good news: L_{CE} for Logistic Regression is a convex function → 1 global minimum

\rightarrow How to find the minimum of L_{CE} ?

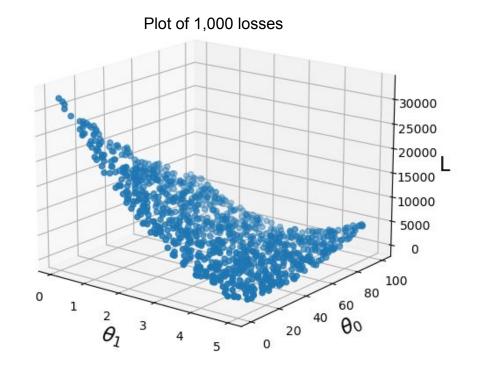
...this should cause a flashback to your calculus classes :)



Method 1: Random Search (the "stupid" way)

- Repeat "enough" times
 - Select random values for $\theta = \{\theta_0, \theta_1, \theta_2, \dots, \theta_n\}$
 - Calculate loss *L* for current θ
- Return θ with smallest loss

- Limitation:
 - Not practical beyond toy examples
- → Don't do that! :)



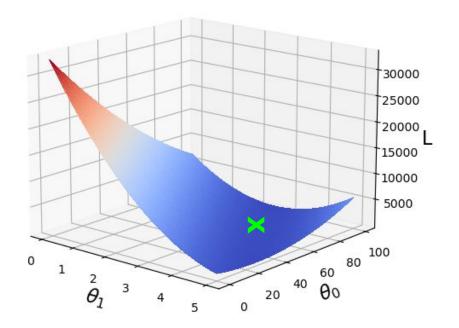
Method 2: Using Calculus (the proper way)

- Minimum of loss function L → Calculus to the rescue!
 - Partial derivatives w.r.t. to all θ_i are 0

$$\frac{\partial L}{\partial \theta_0} = 0, \ \frac{\partial L}{\partial \theta_1} = 0, \ \frac{\partial L}{\partial \theta_2} = 0, \dots, \ \frac{\partial L}{\partial \theta_n} = 0$$

n+1 equations with n+1 unknowns
 (→ 1 unique solution → 1 global minimum)

ightharpoonup What we need: $\dfrac{\partial L}{\partial heta}$



Loss Function — Derivatives

$$L_{CE} = -\frac{1}{m} \sum_{j=1}^{m} \left[y^{(j)} \log \sigma \left(\theta^{T} x^{(j)} \right) + \left(1 - y^{(j)} \right) \log \left(1 - \sigma \left(\theta^{T} x^{(j)} \right) \right) \right]$$

...lots of tedious math here...

$$\frac{\partial L_{CE}}{\partial \theta_i} = \frac{1}{m} \sum_{j=1}^m \left[\sigma \left(\theta^T x^{(j)} \right) - y^{(j)} \right] x_i^{(j)}$$

$$\frac{\partial L_{CE}}{\partial \theta} = \frac{1}{m} X^T \left[\sigma \left(X \theta \right) - y \right]$$
Basic approach to find the minimum

(1) Set derivative to $\mathbf{0} \rightarrow \frac{1}{m} X^T \left[\sigma \left(X \theta \right) - y \right] \stackrel{!}{=} \mathbf{0}$
(2) Solve for θ

$$\frac{\partial L_{CE}}{\partial \theta} = \frac{1}{m} X^{T} \left[\sigma \left(X \theta \right) - y \right]$$

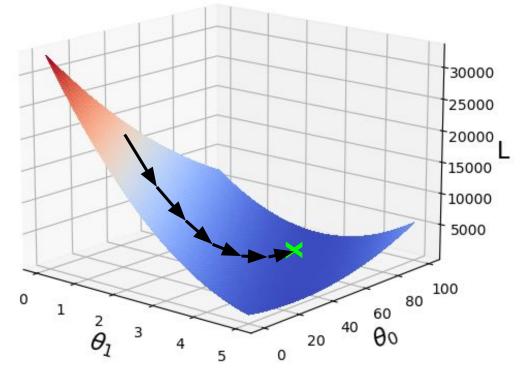
So are we done here?

Gradient Descent

 Problem: $\frac{1}{m}X^{T}\left[\sigma\left(X\theta\right)-y\right]\overset{!}{=}0\text{ has no closed-form solution for }\theta$

→ Gradient Descent

- Start with a random setting of θ
- \blacksquare Adjust θ iteratively to minimize L



Gradient — Quick Refresher

Gradient

- Vector of partial derivatives of a multivariable function (e.g., θ_0 , θ_1 , ..., θ_n)
- Partial derivative: slope w.r.t. to a single variable given a current set of values for all $\theta_0, \theta_1, ..., \theta_n$
- Points in the direction of the steepest ascent

$$\nabla_{\theta} L = \frac{\partial L}{\partial \theta} = \begin{bmatrix} \frac{\partial L}{\partial \theta_0} \\ \frac{\partial L}{\partial \theta_1} \\ \frac{\partial L}{\partial \theta_2} \\ \vdots \\ \frac{\partial L}{\partial \theta_n} \end{bmatrix}$$

Gradients — Runthrough Example (Part 3)

Calculate Gradients (assuming y = 1)

$$\frac{\partial L_{CE}}{\partial \theta} = \frac{1}{m} X^{T} \left[\sigma \left(X \theta \right) - y \right]$$

Feature	Description	Value	Weight θ_i	$\theta_i x_i$	Gradients
x _o	Bias b	1	0.1	0.1	-0.30
X ₁	Number of positive words	3	2.5	7.5	-0.91
x ₂	Number of negative words	2	-5.0	-10.0	-0.61
<i>x</i> ₃	1 if "no" in text; 0 otherwise	1	-1.2	-1.2	-0.30
X ₄	Number of 1st & 2nd person pronouns	3	0.5	1.5	-0.91
<i>x</i> ₅	1 if "!" in text; 0 otherwise	0	2.0	0	0.0
<i>X</i> ₆	In of word/token count	4.19	0.7	2.933	-1.27

$$\Rightarrow \nabla_{\theta} L_{CE} = \begin{bmatrix} -0.30 \\ -0.91 \\ -0.61 \\ -0.30 \\ -0.91 \\ 0.0 \\ -1.27 \end{bmatrix}$$

Gradients — Runthrough Example (Part 3)

- Interpretation of gradients
 - Negative values: a small <u>increase</u> in, e.g., θ_0 or θ_1 will <u>decrease</u> the loss
 - A small change in θ_1 affects the loss more than the same change in θ_0 (since the absolute value of θ_1 is larger than the one of θ_0)
 - Absolute values of gradient not a direct indicator of how to update θ
 - \rightarrow So how do we adjust θ to decrease the loss?

$$\nabla_{\theta} L_{CE} = \begin{bmatrix} -0.30 \\ -0.91 \\ -0.61 \\ -0.30 \\ -0.91 \\ 0.0 \\ -1.27 \end{bmatrix}$$

Gradient Descent Algorithm

- Important concept: learning rate
 - Scaling factor for gradient (typical range: 0.01 0.0001)

Input: data (X, y), loss function L, learning rate η

Initialization: Set θ to random values

while true:

Calculate gradient $\nabla_{\theta} L$

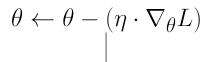
$$\theta \leftarrow \theta - (\eta \cdot \nabla_{\theta} L)$$

In practice: stop loop when θ converges

Gradient Descent — Runthrough Example (Part 4)

• Update weights θ

■ Learning rate: $\eta = 0.1$



Feature	Description	Value	Weight θ_i	$\theta_i x_i$	Gradients	New Weight θ_i
x _o	Bias b	1	0.1	0.1	-0.30	0.13
<i>x</i> ₁	Number of positive words	3	2.5	7.5	-0.91	2.59
x ₂	Number of negative words	2	-5.0	-10.0	-0.61	-4.94
<i>x</i> ₃	1 if "no" in text; 0 otherwise	1	-1.2	-1.2	-0.30	-1.17
X ₄	Number of 1st & 2nd person pronouns	3	0.5	1.5	-0.91	0.59
<i>x</i> ₅	1 if "!" in text; 0 otherwise	0	2.0	0	0.0	2.0
<i>x</i> ₆	In of word/token count	4.19	0.7	2.933	-1.27	0.83

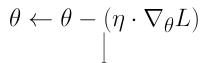
→ 1st iteration of Gradient Descent done!

$$L_{CE} = 0.12 \label{eq:Lce}$$
 (down from 0.36)

Gradient Descent — Runthrough Example (Part 4)

• Update weights θ

■ Learning rate: $\eta = 0.1$

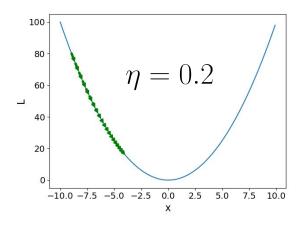


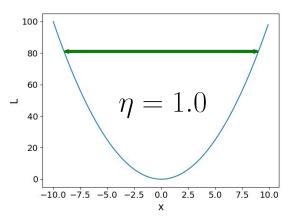
Feature	Description	Value	Weight θ_i	$\theta_i x_i$	Gradients	New Weight θ_i
x _o	Bias b	1	0.13	0.13	-0.11	0.14
<i>X</i> ₁	Number of positive words	3	2.59	7.77	-0.33	2.62
x ₂	Number of negative words	2	-4.94	-9.88	-0.22	-4.92
<i>x</i> ₃	1 if "no" in text; 0 otherwise	1	-1.17	-1.17	-0.11	-1.16
X ₄	Number of 1st & 2nd person pronouns	3	0.59	1.77	-0.33	0.62
<i>x</i> ₅	1 if "!" in text; 0 otherwise	0	2.0	0	0.0	2.0
<i>x</i> ₆	In of word/token count	4.19	0.83	3.46	-0.46	0.87

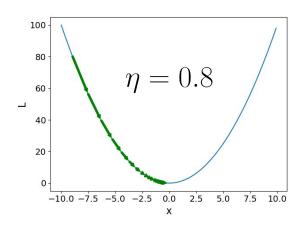
→ 2nd iteration of Gradient Descent done!

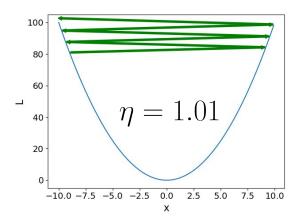
$$L_{CE} = 0.075 \label{eq:Lce}$$
 (down from 0.12)

Ouick Ouiz







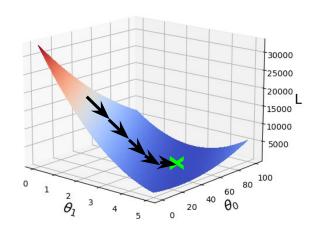


Gradient Descent — Variations

- (Basic) Gradient Descent
 - Calculate gradient und update θ for whole dataset
- Stochastic Gradient Descent (SGD)
 - lacktriangle Calculate gradient und update θ for each data sample
- Mini-batch Gradient Descent
 - lacktriangle Calculate gradient und update θ for batches of sample
 - e.g., batch = 64 data samples
 - In practice often referred to as SGD

Gradient Descent — Variations

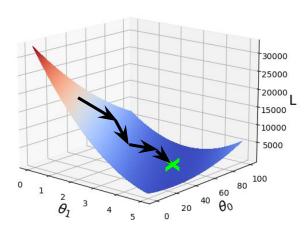
Gradient Descent



Gradient averaged over <u>all</u> data items

- Smooth descent
- Small(er) gradients
- Small(er) update steps

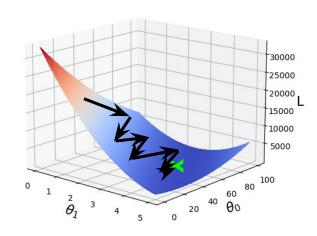
Mini-Batch Gradient Descent



Gradient averaged over <u>some</u> data items

• Well, "somewhere in-between" :)

Stochastic Gradient Descent



Gradient for each data item considered

- Choppy descent
- Large(r) gradients
- Large(r) steps

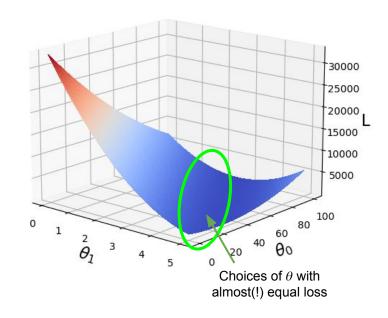
Gradient Descent — When to Stop?

• Intuition: $\nabla_{\theta} L_{CE} < threshold$

Problem: regions of "near-plateaus":

- ightharpoonup Gradient $\nabla_{\theta}L$ very small
- → Step $\eta \nabla_{\theta} L$ extremely small
- → Very slow convergence

- Alternative stop conditions:
 - Loss is small (enough)
 - Change in loss is mall enough
 - Max. #iterations reached



Note: This problem is much more pronounced for non-convex loss function with multiple local minima

Outline

Generative vs. Discriminative Classifiers

Logistic Regression

- Setup as Probabilistic Classifier
- Cross-Entropy Loss Function
- Gradient Descent
- Overfitting & Regularization
- Multiclass Logistic Regression

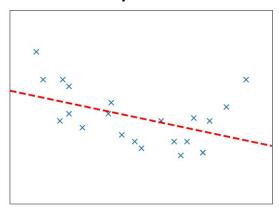
Towards Neural Networks

- Motivation: XOR Problem
- Basic Neural Network Architecture

Overfitting — Basic Intuition

- Overfitting Visualized using curve fitting
 - Task: Find a polynomial for degree p that best fit the data points

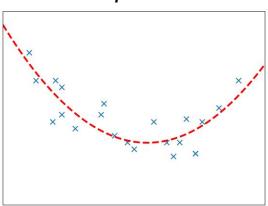
p = 1



Underfitting

- Polynomial of degree 1 just a line
- Not capable to fit non-linear data

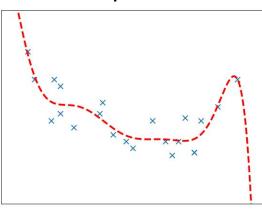
p = 2



Good fit

- Model captures the overall trend
- Probably good fit for unseen data

p = 8



Overfitting

- Model has too much capacity to exactly fit individual data points
- Probably bad fit for unseen data

Overfitting — Intuition (Naive Bayes Classifier)

- Scenario movie reviews
 - (Very) low number of reviews
 - NB classifier based on 4-grams

This movie drew me in, and it'll do the same to you.	positive
I can't tell you how much I hated this movie. It sucked.	negative

- → Effect of Naive Bayes classifier
 - Each 4-gram most likely unique and associated with only 1 class (e.g., "tell you how much" only found in a negative review)
 - Unseen positive review x containing "tell you how much" $\rightarrow P(positive|x) = 0$

Overfitting — Intuition (Logistic Regression Classifier)

- Scenario movie reviews
 - (Very) low number of reviews
 - Assume the following artifact
 All positive reviews contain many pronouns
 Almost no negative reviews contain pronouns

Feature	Description	Value	Weight θ_i	$\theta_i x_i$
x _o	Bias b	1	0.1	0.1
X ₁	Number of positive words	3	2.5	7.5
x ₂	Number of negative words	2	-5.0	-10.0
<i>x</i> ₃	1 if "no" in text; 0 otherwise	1	-1.2	-1.2
X ₄	Number of 1st & 2nd person pronouns	3	0.5	1.5
<i>X</i> ₅	1 if "!" in text; 0 otherwise	0	2.0	0
<i>x</i> ₆	In of word/token count	4.19	0.7	2.933

- → Effect of Logistic Regression classifier
 - Classifiers over-emphasizes the importance of pronouns
 - ightharpoonup large value for θ_4 (compared to other θ_i)
 - Unseen negative review with many pronouns will most likely be misclassified

Regularization

- Observation
 - Model "too powerful" \Leftrightarrow (very) large θ values

- \rightarrow Regularization: Penalize large θ values
 - Extend loss function by penalty term
 - For example, for Cross-Entropy loss

$$L = -\frac{1}{m} \sum_{j=1}^{m} \left[y^{(j)} \log \sigma \left(\theta^T x^{(j)} \right) + \left(1 - y^{(j)} \right) \log \left(1 - \sigma \left(\theta^T x^{(j)} \right) \right) \right] + \lambda \sum_{i=1}^{n} \theta_i^2$$

$$L = -\frac{1}{m} \sum_{j=1}^{m} \left[y^{(j)} \log \sigma \left(\theta^T x^{(j)} \right) + \left(1 - y^{(j)} \right) \log \left(1 - \sigma \left(\theta^T x^{(j)} \right) \right) \right] + \lambda \sum_{i=1}^{n} |\theta_i|$$

 λ : Regularization Parameter to control the "strength of the regularization"

L2 Regularization

("Ridge Regression")

L1 Regularization ("Lasso Regression")

New Loss → New Gradient

- Since we change L, the gradient $\nabla_{\theta}L=\frac{\partial L}{\partial \theta}$ also changes
 - No big deal, regularization is just an added term
 - For example, for L2 Regularization (Ridge Regression)

$$\frac{\partial L_{CE}}{\partial \theta} = \frac{1}{m} X^{T} \left[\sigma \left(X \theta \right) - y \right] + \lambda \frac{2}{n} \theta$$

No changes to Gradient Descent Algorithms

Ouick Ouiz

Outline

Generative vs. Discriminative Classifiers

Logistic Regression

- Setup as Probabilistic Classifier
- Cross-Entropy Loss Function
- Gradient Descent
- Overfitting & Regularization
- Multiclass Logistic Regression

Towards Neural Networks

- Motivation: XOR Problem
- Basic Neural Network Architecture

Binary LR → Multiclass LR

- Multiclass LR: Classification beyond 2 classes
 - Let's assume we have C classes: c = 1..C
 - Separate weights θ_c for each classes $c \rightarrow C$ output probabilities

Binary Logistic Regression

Multiclass Logistic Regression

$$P(y = 1|x) = \sigma(\theta_1^T x) \qquad \qquad \qquad \qquad \qquad \qquad \begin{bmatrix} P(y = 1|x) \\ P(y = 2|x) \\ \dots \\ P(y = C|x) \end{bmatrix} = f_{mystery} \begin{pmatrix} \begin{bmatrix} \theta_1^T x \\ \theta_2^T x \\ \dots \\ \theta_C^T x \end{bmatrix} \end{pmatrix}$$

Probabilities need to sum up to 1

→ How can we ensure that?

$f_{mystery} \rightarrow Softmax$

Softmax function

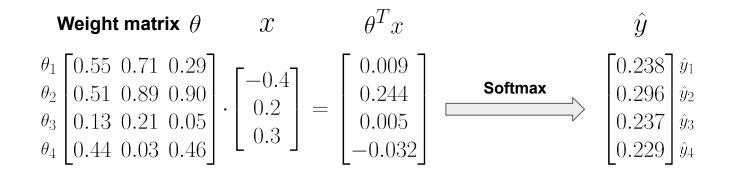
 Converts any vector of scores into a vector of probabilities

$$P(y = c|x) = \frac{\exp(\theta_c^T x)}{\sum_{i=1}^{C} \exp(\theta_i^T x)}$$

$$\begin{bmatrix} P(y=1|x) \\ P(y=2|x) \\ \dots \\ P(y=C|x) \end{bmatrix} = \frac{1}{\sum_{i=1}^{C} \exp(\theta_i^T x)} \begin{bmatrix} \exp(\theta_1^T x) \\ \exp(\theta_2^T x) \\ \dots \\ \exp(\theta_C^T x) \end{bmatrix}$$

Example

Example with 4 classes and 3 input features



Cross-Entropy Loss

Cross-Entropy Loss for Binary Logistic Regression

$$L_{CE}(\hat{y}, y) = -\left[y \log \hat{y} + (1 - y) \log (1 - \hat{y})\right]$$

Generalized Cross-Entropy Loss for Multiclass Logistic Regression

$$L_{CE}(\hat{y},y) = -\sum_{i=1}^{C} y_i \log(\hat{y_i})$$
 probability output after Softmax
$$y_i = 1 \text{ for correct class, 0 otherwise}$$

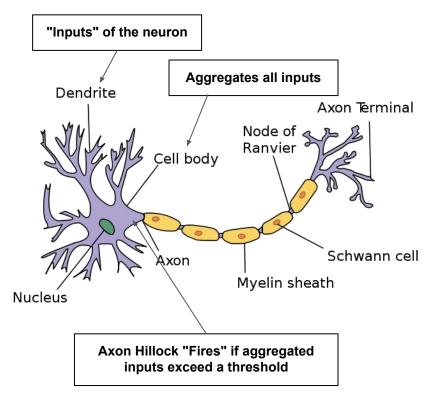
New gradient $\nabla_{\theta} L_{CE}$ but beyond the scope here.

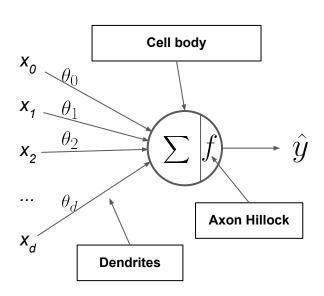
Outline

Generative vs. Discriminative Classifiers

- Logistic Regression
 - Setup as Probabilistic Classifier
 - Cross-Entropy Loss Function
 - Gradient Descent
 - Overfitting & Regularization
 - Multiclass Logistic Regression
- Towards Neural Networks
 - **■** Motivation: XOR Problem
 - Basic Neural Network Architecture

Biological Inspiration — Neuron





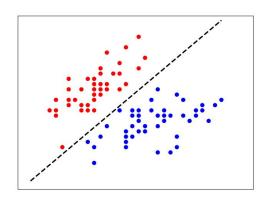
→ Logistic Regression (crudely) a biological neuron

Source: Wiki Common (CC BY-SA 3.0): neuron

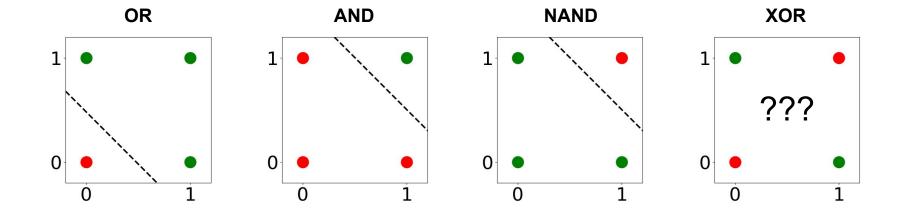
Logistic Regression — Limitations

- Logistic Regression is a linear model
 - Limited to linear combination of features (and a non-linear mapping to a probability)
 - Limited to linear decision boundaries (i.e., lines, planes, hyperplanes)

- Feed input into multiple neurons (i.e., LR units)
- Use output of neurons as input for other neurons



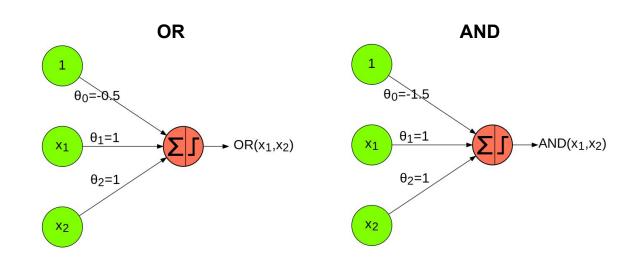
x ₁	X ₂	OR	AND	NAND	XOR
0	0	0	0	1	0
0	1	1	0	1	1
1	0	1	0	1	1
1	1	1	1	0	0

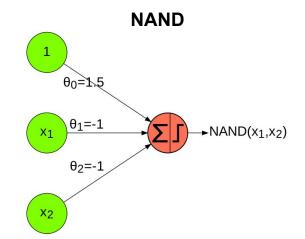


XOR

- Learning OR, AND, and NAND
 - Finding correct weights simply by "looking hard" (the weights are not unique; there are many ways to set θ)
 - The activation function is the Step Function, not Sigmod (strictly speaking, this makes it a Perceptron not a Linear Regression unit)

$$f_{step} = \begin{cases} 1 & \text{, if } \theta^T x > 0 \\ 0 & \text{, otherwise} \end{cases}$$



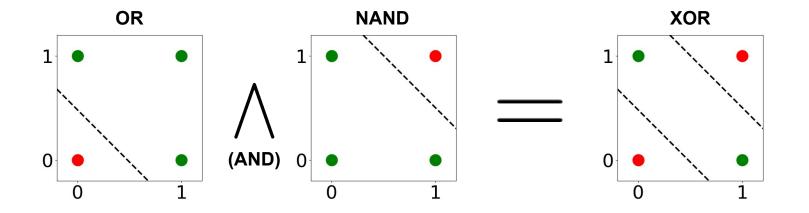


XOR

Deriving XOR from simple classifiers

■ Note: this is not the only way, just convenient

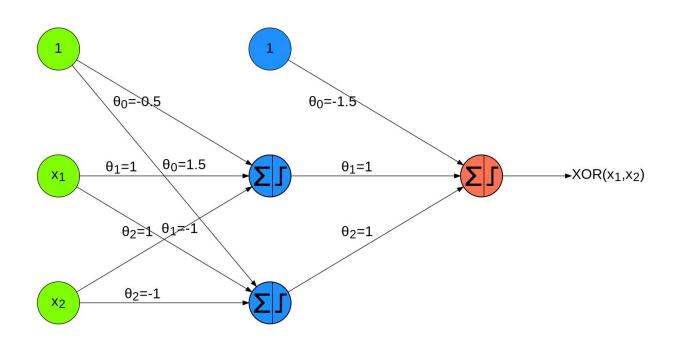
X ₁	X ₂	OR	AND	NAND	XOR
0	0	0	0	1	0
0	1	1	0	1	1
1	0	1	0	1	1
1	1	1	1	0	0



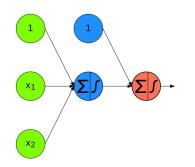
→ Cool, we know how to do ORs, ANDs and NANDs!

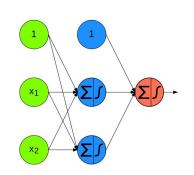
XOR

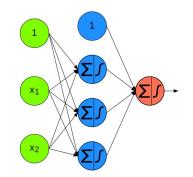
- Modeling XOR by "stacking" LR units → Neural Network (NN)
 - More specifically, a **Feedforward NN** (i.e., network contains no loops)

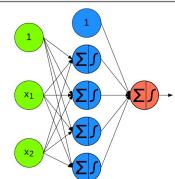


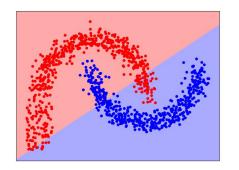
Network Capacity — Intuition

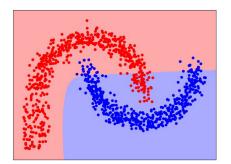


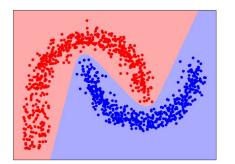


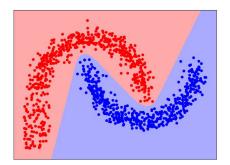












Note: The activation function is the Sigmoid, hence the smooth decision boundaries

Outline

Generative vs. Discriminative Classifiers

Logistic Regression

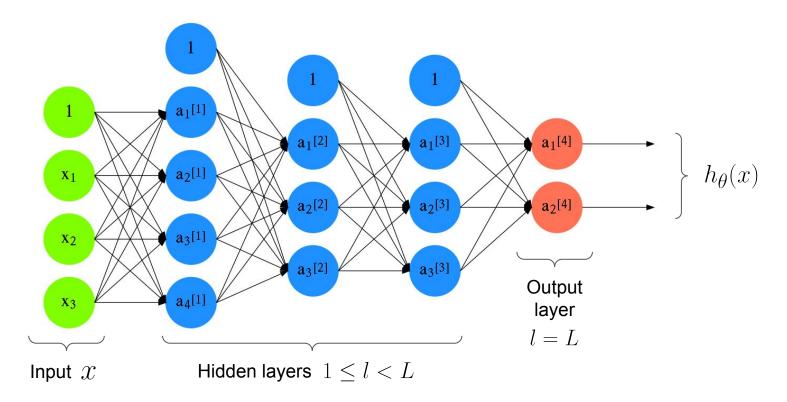
- Setup as Probabilistic Classifier
- Cross-Entropy Loss Function
- Gradient Descent
- Overfitting & Regularization
- Multiclass Logistic Regression

Towards Neural Networks

- Motivation: XOR Problem
- **Basic Neural Network Architecture**

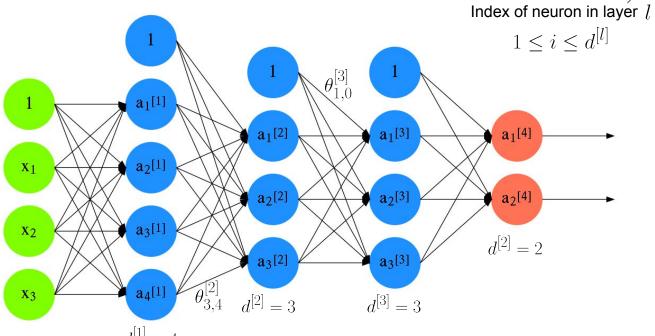
A Neural Network (Feedforward NN)

• Example: *L*-layer Feedforward Neural Network (here: *L* = 4)



Neural Network — **Indices**

 $d^{[l]} = \mbox{ \#neurons/units in layer } l$ $\theta^{[l]} = (d^{[l-1]}+1) \cdot d^{[l]} = \mbox{ \#weights for layer } l$

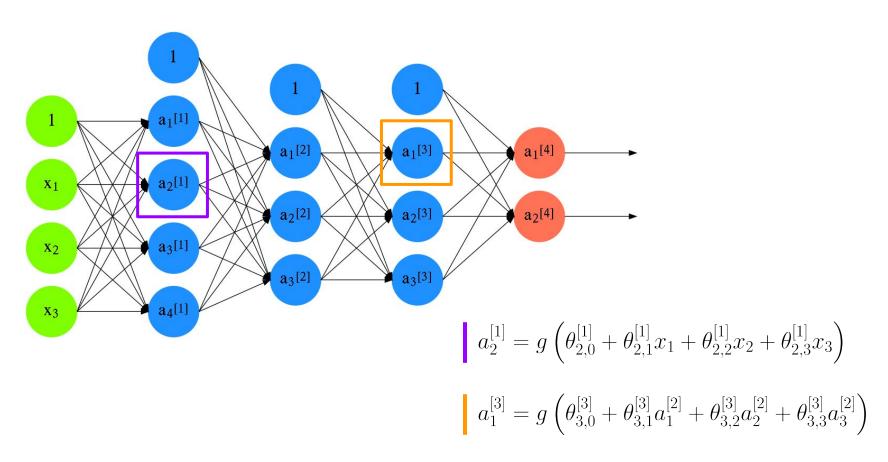


 $heta_i^{[l]}$, $heta_i^{[l]}$, ayer l Index of neuron in layer l-1

 $0 \le i < d^{[l-1]}$

layer l

Neural Network — Activations



Neural Network — Activations

Layer-wise computations

- \blacksquare Let $x^{[l]}$ be the output of layer l
- $lacksquare x^{[0]} = x$ initial input
- $ullet x^{[L]} = h(x)$ final output

Vectorized form

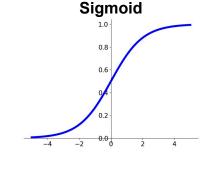
- lacktriangle Calculate $x^{[l]}$ in practice "in one go"
- Everything becomes matrix* operations
- GPUs: hardware-supported processing of matrix operations (+ parallelism)

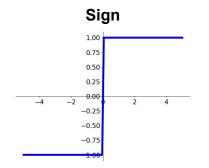
$$\begin{split} x_i^{[l]} &= a_i^{[l]} = g \left(\sum_{j=0}^{d^{[l-1]}} \theta_{i,j}^{[l]} x_j^{[l-1]} \right) \\ &= g \left(\left[\theta_i^{[l]} \right]^T \cdot x^{[l-1]} \right) \\ &\uparrow \\ \text{Weight vector } \theta_i^{[l]} \in \mathbb{R}^{d^{[l-1]}} \end{split}$$

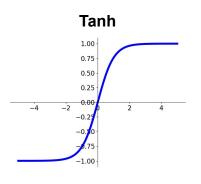
$$x^{[l]} = a^{[l]} = g\left(\theta^{[l]}x^{[l-1]}\right)$$
 Weight matrix $\theta^{[l]} \in \mathbb{R}^{d^{[l]} \times d^{[l-1]}}$

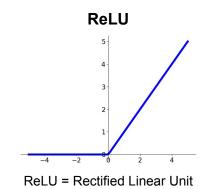
Neural Network — **Activation Functions**

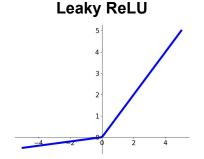
- Wide range of activation functions
- Activations functions for hidden layers
 - Do not need to have a probabilistic interpretation
 - Only requirement: non-linear function!
 - Examples:







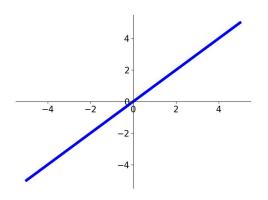




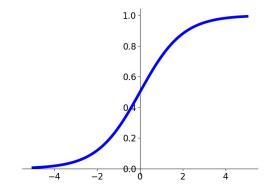
Neural Network — **Activation Functions**

- Activations functions for output layers
 - Choice of activation function depending on task (mainly: classification or regression)
 - Examples:

Linear function for regression tasks



Sigmoid function for classification tasks

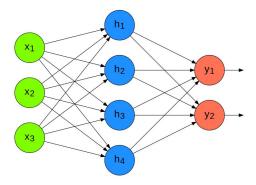


Example

Input x

Hidden h

Output y



$$h = g_h(\theta_h x)$$
, with $\theta_h \in \mathbb{R}^{4 \times 3}$

$$y = g_y(\theta_y h)$$
, with $\theta_y \in \mathbb{R}^{2 \times 4}$

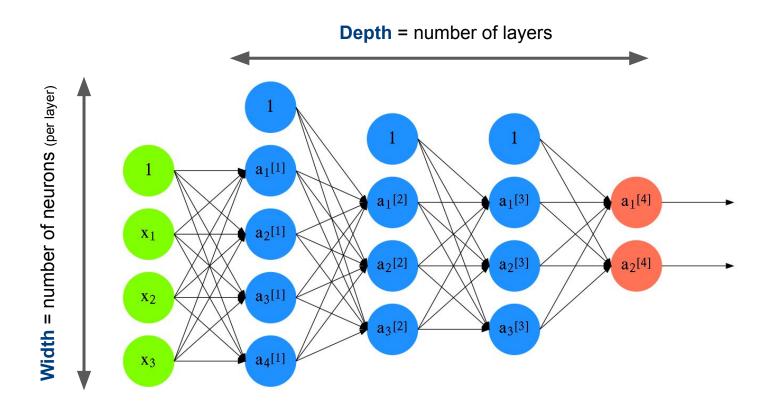
 $g_h,\ g_y$: suitable activation functions

 $\theta_h = x - \theta_h x$

$$\begin{bmatrix} 0.55 & 0.71 & 0.29 \\ 0.51 & 0.89 & 0.90 \\ 0.13 & 0.21 & 0.05 \\ 0.44 & 0.03 & 0.46 \end{bmatrix} \cdot \begin{bmatrix} -0.4 \\ 0.2 \\ 0.3 \end{bmatrix} = \begin{bmatrix} 0.009 \\ 0.244 \\ 0.005 \\ -0.032 \end{bmatrix} \quad \nearrow \quad ReLU(\theta_h x) = \begin{bmatrix} 0.009 \\ 0.244 \\ 0.005 \\ 0 \end{bmatrix} \quad \nearrow \quad \begin{bmatrix} 0.65 & 0.28 & 0.68 & 0.59 \\ 0.02 & 0.56 & 0.26 & 0.42 \end{bmatrix} \cdot \begin{bmatrix} 0.009 \\ 0.244 \\ 0.005 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.078 \\ 0.138 \end{bmatrix} \quad \nearrow \quad Softmax(\theta_y h) = \begin{bmatrix} 0.48 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 9 \\ 0 \\ 5 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} -0.4 \\ 0.2 \\ 0.3 \end{bmatrix} = \begin{bmatrix} 0.00 \\ 0.24 \\ 0.00 \\ 0.00 \end{bmatrix}$$

Neural Networks



From Logistic Regression to (Deep) Neural Networks

- Fundamentally, nothing new here:
 - A neural network is a function $h_{\theta}(x)$
 - Define a loss function $L = L(y, \hat{y}) = L(y, h_{\theta}(x))$
 - Perform Gradient Descent to minimize L
- Difference: increased complexity
 - lacksquare $h_{ heta}(x)$ and thus $L(y,h_{ heta}(x))$ are much more complex functions
 - Calculation of $\frac{\partial L}{\partial \theta}$ much more challenging → backpropagation
 - L is no longer a convex function \rightarrow local minima \rightarrow training more challenging
 - Overfitting becomes a bigger issue → regularization (several different approaches)

Outline

- Generative vs. Discriminative Classifiers
- Logistic Regression
 - Setup as Probabilistic Classifier
 - Cross-Entropy Loss Function
 - Gradient Descent
 - Overfitting & Regularization
 - Multiclass Logistic Regression
- Towards Neural Networks
 - Motivation: XOR Problem
 - Basic Neural Network Architecture

Summary

- Linear model: **Logistic Regression**
 - Very important probabilistic classifier
 - Discriminative classifier → linear decision boundaries
 - Core unit of neural networks
- "Stacked" Logistic Regression → Neural Network
 - Neuron = Linear Regression unit
 - Non-convex loss function → global minimum vs. local minima
 - Higher risk of overfitting → regularization crucial (but also other methods)

Pre-Lecture Activity for Next Week

Solutions to Ouick Ouizzes

