
CS4248 Natural Language Processing
Tutorial 2: Language Models

and Text Classification
In this tutorial, we’ll practice four technical topics from our Week 03 and 04 lectures: Language Models,
Perplexity, tf×idf and Naïve Bayes.

Please come to your tutorial session, with your attempts to these questions. It’s fine to come without a working
solution but to get the most out of tutorial, you should attempt them so that you have practice before solutions
can be shared. Extension exercises marked with a “**” or “***” are slightly more advanced and you (and your
tutorial leader) may not have time to go over them. You’re welcomed to discuss these on the forum among
yourselves (Let’s keep an active forum!)

It is encouraged to try to do the question before the tutorial since we plan to have a Kahoot game at the start
of the tutorial.

1. What is going [MASK]? (Language Models and Smoothing)

1. Let’s imagine your brain as a super language model (with unlimited capacity for vocabulary and
accompanying probabilities). Come up with three predictions for “What is going [MASK]” and rank
by their approximate likelihood.

2. Given the corpus below, calculate the bigram MLE P(w|go) for all possible words w. For this
exercise only, do some pre-processing and lemmatize the words before constructing the tokens and
probabilities (we do this here to densify the probabilities a bit).

** To think about: In practice, LMs usually do very little or no preprocessing outside of tokenization.
Why do you think that is?

Alice is going to the school. The traffic is going smoothly. She is going to have a meeting with her
advisor, Prof Smith. Recently her research is going on very well. When Prof Smith asks “how’s it
going with your research?”, Alice’s heart beat does not go up and she goes on with a clear update.

After the meeting, they go for a coffee downstairs together.

3. Let’s assume |V| = 100. Calculate P(quickly|go) directly using your language model obtained in
last step? If this isn’t possible, state why and how you could resolve it, and your equivalent probability.

** To think about: What are limitations of a bigram (or even any Markov assumption)? Let’s
consider some new contexts:

Hi Alice, what is going [MASK]?
The microwave is not heating up, what is going [MASK]?

The tax is going [MASK] by ten percent.

Can we get satisfactory predictions with a bigram LM? How would you solve your identified
limitations?
Hint: Play around the interactive LM demo here: https://huggingface.co/FacebookAI/roberta-base.
Note that this is more general language model and not one based strictly on bigrams. It uses a
transformer architecture that is at the limit of our syllabus; we’ll touch upon it starting in Week 08.

2. Don’t be perplexed
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wi

<s> I am here </s>
wi−1 <s> 0 0.1 0.0002 0.01 0

I 0 0.0003 0.5 0.0001 0.0002
am 0 0.005 0.0001 0.03 0.0005
here 0 0.02 0.0001 0.003 0.001
</s> 0 0 0 0 0

1. Let’s start simply. Definition: What is Perplexity? Why do we need the fraction 1
N in the definition

of perplexity?
2. Intuition: Why do we need this measure of perplexity?

3. vs Probability: Given a test set W, how does the probability P(W) change when we minimize
perplexity?

4. Practice: Assume we are using bigram model. Given W = “I am here” and the following table,
compute PP(w).
** Word scramble: What happens with the input W = ”I here am”? Would we obtain a smaller or
larger perplexity? Why?

3. Which is better? (a.k.a. BOW vs tf×idf and Cosine Similarity)

Consider following query(q) and documents (d1 - d3):

q: Apple ships new Macbook.
d1: TSMC is busy producing new Macbook.

d2: Apple Stores are busy hosting Macbook fans.
d3: New laptop are announced by Tim Cook.

1. Show a Bag of Words (BoW) representation and tf×idf representation of all the documents. Prepro-
cess first by removing stop words from present on the NLTK list:
(https://gist.github.com/sebleier/554280).

2. Please calculate the Cosine similarity between <q, d1>, <q, d2>, <q, d3> using both BoW and
tf×idf representation.

3. Which document shares the highest semantic similarity with the query? Has it been ranked at the
highest place? If not, any recommendation to address this problem?
Hint: “Semantic similarity” also measures how similar a set of documents are. But it is based on
the likeness of their meaning or semantic content6 as opposed to lexicographical similarity (which
tf×idf is designed for).
*** From a different perspective (angle): Besides Cosine Distance, what other distance metrics are in
your radar? Do you think there will be a big impact to the ranking by changing the distance metric?

4. Stay Simple, Stay Naïve, (a.k.a. Naïve Bayes)

6https://en.wikipedia.org/wiki/Semantic_similarity
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doc exciting happy upset furious class
d1 0 1 2 1 neg
d2 2 1 2 3 neg
d3 0 0 1 1 neg
d4 3 3 0 0 pos
d5 2 0 1 0 pos

Table 11: Counts of key sentiment words for each document. The assigned classes are given in the last column
(pos for positive and neg for negative).

doc text class
d6 - I am happy, happy with the exciting result, but furious at your attitude. neg
d7 - I don’t think they’ll be happy with the seemly happy news, which makes neg

me upset rather than happy.
d8 - The exciting news is like an exciting gift, dispelling my upset mood. pos

Table 12: Text of testing documents, where the ground-truth classes are displayed in the last column.

Naïve Bayes allows us to define the features we want in text classification. In this question, you will
utilize Naïve Bayes (and its variants) to do sentiment analysis. To simplify, we fix the set of key sentiment
words as {exciting, happy, upset, furious}. And the word counts of each document are provided
in Table 11 with the sentiment class as the training corpus. In the following tasks, you need to train
Naïve Bayes (and its variants) on it to predict the class of the testing samples in Table 12.

1. Train a multinomial Naïve Bayes model with add-1 smoothing. Use this model to assign a class (pos
or neg) to each of the document in testing set.

2. In practice, whether a word occurs or not usually matters more than its frequency, which motivates
a lot of works to clip the word counts (i.e., remove all duplicate words) in each document. And this
variant is called binary multinomial Naïve Bayes.
Construct a binary multinomial Naïve Bayes model trained on the same corpus, and use it to predict
the labels of the testing set.

3. Use the metrics we’ve learned from class to evaluate the results. Can you see some difference in the
predictions of the two models? Which metric do you think better reflects the models’ performance?

4. Negation is an important issue in sentiment analysis. For example, in d6, it changes the sentiment
polarities of the key words.
Can you think of an idea to address the influence of negation here?

Hints. You can utilize the logpriors and loglikelihoods below for your calculation.
Recall the formulas to calculate the log-prior for a class c ( 11) and the (add-one) log-likelihood for a
word w w.r.t a class c ( 12):

logprior[c]← log
Nc

Ndoc
(11)

loglikelihood[w, c]← log
count(w, c) + 1

∑w′∈V(count(w′, c) + 1)
(12)

Then for multinomial NB, we have the results as follows:

logprior[pos] = log
2
5

, logprior[neg] = log
3
5

Page 3 of 4



loglikelihood[exciting, pos] = log
5 + 1
9 + 4

= log
6
13

, loglikelihood[exciting, neg] = log
2 + 1
14 + 4

= log
1
6

loglikelihood[happy, pos] = log
3 + 1
9 + 4

= log
4
13

, loglikelihood[happy, neg] = log
2 + 1
14 + 4

= log
1
6

loglikelihood[upset, pos] = log
1 + 1
9 + 4

= log
2
13

, loglikelihood[upset, neg] = log
5 + 1

14 + 4
= log

1
3

loglikelihood[ f urious, pos] = log
0 + 1
9 + 4

= log
1
13

, loglikelihood[ f urious, neg] = log
5 + 1
14 + 4

= log
1
3

For binary NB, we have the results as follows:

logprior[pos] = log
2
5

, logprior[neg] = log
3
5

loglikelihood[exciting, pos] = log
2 + 1
4 + 4

= log
3
8

, loglikelihood[exciting, neg] = log
1 + 1
9 + 4

= log
2

13

loglikelihood[happy, pos] = log
1 + 1
4 + 4

= log
1
4

, loglikelihood[happy, neg] = log
2 + 1
9 + 4

= log
3

13

loglikelihood[upset, pos] = log
1 + 1
4 + 4

= log
1
4

, loglikelihood[upset, neg] = log
3 + 1
9 + 4

= log
4

13

loglikelihood[ f urious, pos] = log
0 + 1
4 + 4

= log
1
8

, loglikelihood[ f urious, neg] = log
3 + 1
9 + 4

= log
4

13
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