
CS4248: Natural Language Processing

Lecture 4 — Text Classification
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Recap — Clarification 

2

● [In-Lecture] activity from Lecture 3
■ Calculate P(saw|alice)

alice accident 5

saw alice 5

alice the 15

alice saw 20

saw the 25

accident saw 1

accident alice 2

Why can't we use this occurrence of 
"alice" to compute Count(alice)?

Counterexample: "then alice saw" 

then alice 1

alice saw 1

➜ We can't use bigram table
    to directly read



Recap — Clarification 

3

● Kneser-Ney Smoothing
■ Estimating d for absolute discounting

Bigram count in
training corpus

Bigram count in 
test corpus

0 0.000270

1 0.448

2 1.25

3 2.24

4 3.23

5 4.21

6 5.23

7 6.21

8 7.21

9 8.26

… …

bigram #occurences in 
training corpus

#occurences in 
test corpus

alice saw 5 3

who will 5 7

table with 5 4

in singapore 5 4

found at 5 5

he thought 5 6

… … …

time when 5 2

Example: All bigrams occurring 
5 times in the training corpus

Average: 5 Average: 4.21

~0.75 difference

Quick quiz: What is a core 
requirement regarding the 
training and test corpus?
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Text Classification — Motivation 
● Very common machine learning task: classification

■ Focus in the context of NLP: classification of text documents

■ Task: given a text document, assign document a class
(in general, the set of classes are finite and predefined)

● Examples

5

Task Classes (examples)

language detection {english, malay, chinese, tamil, german, …}

spam detection {spam, not spam}

subject/genre classification {biology, chemistry, geology, psychology, ...}

authorship attribution {stephen king, dan brown, jk rowling, …}

sentiment analysis {positive, negative, neutral, mixed}

… …



Text Classification — Language Detection
● Identification of the language

■ Relatively straightforward in case of unique alphabets/characters

■ More tricky in case of (closely) related languages

6

Example: Google Translate



Text Classification — Email Spam Detection
● Email, messenger, SMS spam

■ Mostly annoying (e.g., ads)

■ Security risks (e.g., phishing, malicious attachments)

7



● Typical application: 
■ Automated organization of huge volumes of documents

Text Classification — Subject Classification

8

ACM Computing Classification 
System (very small snippet)



Text Classification — Authorship Attribution
● NLP/AI meets Linguistic Forensics

■ Anonymously written documents

■ Documents written under a pseudonym

● Observation — underlying assumption: 
■ People have unique writing styles

■ Vocabulary, frequent phrases,
sentence lengths, typos, etc.

9
Source: https://www.intelligentcio.com/eu/2018/08/28/ai-reveals-authors-of-anonymous-19th-century-texts-on-evolution/ 

https://www.intelligentcio.com/eu/2018/08/28/ai-reveals-authors-of-anonymous-19th-century-texts-on-evolution/


Text Classification — Sentiment Analysis
● Sentiment Analysis: 

■ An author’s subjective or emotional attitude towards the central topic of the text

■ Very commonly applied to assess online users opinions about product and services
(e.g., product reviews, hotel/restaurant reviews, movie/song/book reviews)

■ Also: consumer feedback, brand monitoring, political views, trend analysis, etc.

10
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In-Lecture Activity (5 mins)
● Question: What are applications where text classification

may be ethically questionable or even harmful?
■ Brainstorm with your peers; there's is no right and wrong here

■ Post your solution to Canvas > Discussions
(individually or as a group; include all group members' names in the post)
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Text Classification
● Formal setup

■      — set of all documents;              — a single document

■      — set of all classes (or class labels);              — a single class (or class label)

● Classification task
■ Mapping     from input space     to output space

13

e.g., 

"True" mapping which 
is unknown in practice

Note: A document might be assigned to more 
than one class ➜ multilabel classification



Text Classification
● Goal of a classification task

■ Find the best          to approximate the true mapping             ➜  But how?

● Two main approaches

14

(1) Rule-based (decision rules)

(2) Supervised Learning (machine learning classifiers)

■ Automatically learn          based on a dataset of             pairs
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Naive Bayes Classifier — Intuition
● Simple ("naive") probabilistic classifier based on Bayes Rule

■ Given a document    , for each class      compute

■ Assign document to class     with the highest probability

■ Calculate
using Bayes Rule

● Example (sentiment analysis)

● Relies on a very simple representation of documents: Bag-of-Words (BoW)

16

➜

hopefully :)

➜



Bag-of-Word (BoW) Representation
● Simplifying assumptions

■ Represent a document as a bag (i.e., multiset) of words
(i.e., we also keep track of the word counts)

■ Ignore any word order or any other grammar

● BoW representation affected by
■ Tokenization

■ Normalization

17

Choice depending on application/task



Bag-of-Words Representation — Example

18

Movie review for "Airplane!" (1980)

Normalization steps:
● Removal of non-words
● Removal of stopwords
● Case-folding (lowercase)



19

Quick Quiz

For which NLP task is a BoW 
representation of documents 
arguably least problematic?

Document Categorization

Machine Translation

Sentiment Analysis

Syntactic Parsing
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Naive Bayes Classifier — Annotated
● Basic setup

■ Document              with                                            (BoW representation)

■ Class label 

21

Prior: Probability that      belongs to 
class      without seeing any data

Likelihood: Probability of      given 
that it belongs to glass

Marginal: Probability 
of      under any class

Posterior: Probability of class     
given document     



Naive Bayes Classifier
● Observation

■ We are not really interested in the exact values of 

■ We only care about the difference between              and  

22

?

The marginal does not affect to result of comparison!



Naive Bayes Classifier — The "Naive" Part
● Simplifying assumption

■ All words                            are independent from each other

■ Obviously does not hold, but still good results in practice

23

"Naive" assumption

How to calculate 
these probabilities?



Naive Bayes Classifier — Maximum Likelihood Estimates
● Prior

● Likelihood

24

#documents of class

#documents (total)

#occurrences of      in documents of class

#words (total) in documents of class

Does this look familiar?



Naive Bayes Classifier — Practical Considerations
● Risk of arithmetic underflow  ➜  Calculate log probabilities

● Out-of-vocabulary (OOV) words + unrepresented classes
■ Unseen words      during test/prediction time  ➜                               ➜ 

■ No document of class      ➜

25

➜

e.g.: Add-k Smoothing:
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Naive Bayes Classifier — Runthrough
● Sentiment Analysis

■ Documents: movie reviews
■ Two classes: "pos", "neg"

27

Review Class

very good and funny movie! pos

what a funny cast! pos

a very boring movie and boring cast neg

very boring cast! neg

such a funny movie! pos

really good cast, really good movie. pos

"boring…such a boring movie!!! neg

Example corpus
(greyed-out words/tokens removed during normalization)



Naive Bayes Classifier — Runthrough
● Calculating priors (with Laplace Smoothing)

■ Number of reviews

■ Number of positive reviews

■ Number of negative reviews

28

P(pos) P(neg)

5/9 4/9



Naive Bayes Classifier — Runthrough
● Calculating likelihoods (with Laplace Smoothing)

29

wi P(wi|pos) P(wi|neg)

funny 4/16 1/14

boring 1/16 6/14

movie 4/16 3/14

cast 3/16 3/14

good 4/16 1/14

We have the priors and likelihoods ➜ Naive Bayes Classifier done training

…



Naive Bayes Classifier — Runthrough
● Predict class for a new review

30

Review Class

a funny movie and cast ???

P(pos) P(neg)

5/9 4/9

wi P(wi|pos) P(wi|neg)

funny 4/16 1/14

boring 1/16 6/14

movie 4/16 3/14

cast 3/16 3/14

good 4/16 1/14

➜  Label review with "pos"
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Naive Bayes Classifier + BoW — Discussion 
● Naive Bayes vs. Language Models

■ Naive Bayes makes a non-contextual decision (unigram model; but can be extended to larger n-grams)

■ Naive Bayes treats each class like a separate language model

● Biggest pro: simplicity
■ Easy to understand & implement, fast, not very data hungry, interpretable results

● Biggest con: assumption of conditional independence
■ For most types of data, the features are typically not independent

■ For text classification (features = words) it actually often works well in practice
(particularly with some additional "tweaking" of the data)

32



Naive Bayes Classifier + BoW — Limitations
● Example: Sentiment Analysis

■ BoW incapable to handle some relevant linguistic phenomena

■ Most prominently: negation (typically flips the sentiment)

● Possible countermeasure (to handle negation)

■ Add prefix "NOT" to every word between negation word and next punctuation mark
(Note: this is a common heuristic which is neither trivial nor perfect — but if often works well)

33

Particularly a problem if "not" 
is removed as a stopword

➜

Quick quiz: Where would this 
simple heuristic fail? Examples?



Naive Bayes Classifier + BoW — Limitations

34

● Example: Sentiment Analysis
■ Sentiment is often expressed/conveyed in phrases or idioms (not just individual words)

■ Other challenges: modals (e.g., may, might), conditionals (e.g., if), questions, literary devices (e.g., sarcasm)

■ Often requires deep world and contextual knowledge

Note: These challenges are not limited to the Naive Bayes classifier, but more prominent due to its BoW approach



Naive Bayes Classifier — Summary
● Naive Bayes = class-specific language model

■ Probabilistic classifier based on Bayes Rule

● Good baseline
■ Robust, fast to train, low storage requirements

■ Works actually pretty well for many text classification tasks
(e.g., sentiment analysis over reviews which often contain very indicative words)

● Strong assumption: conditional independence
■ Requires careful assessment if this assumption (at least somewhat) holds

■ Maybe some tweaks possible address this issue (e.g., negation handling)

35
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Evaluating Classifiers — Error Types
● Recall from Lecture 2: Two basic types of errors

■ Assume there are only 2 classes: Positive (1) & Negative (0) ➜ binary classification

■ There are 2 ways for a classifier to get it wrong

■ Analogously, there are 2 ways to get it right

37

The classifier incorrectly predicts the label

The classifier incorrectly fails to predict the label

False Positives (Type I Errors)

False Negatives (Type II Errors)

➜

➜

The classifier correctly predicts the label

The classifier correctly fails to predict the label

True Positives

True Negatives

➜

➜
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Classification: Evaluation — Confusion Matrix

1 0

1 True Positives (TP) False Positives (FP)

0 False Negatives (FN) True Negatives (TN)

actual labels 

True Positives (TP): Number of positive classes that have been correctly predicted as positive

True Negatives (TN): Number of negative classes that have been correctly predicted as negative

False Positives (FP): Number of negative classes that have been incorrectly predicted as positive

False Negatives (FN): Number of positive classes that have been incorrectly predicted as negative



Classification: Evaluation — Popular Metrics 

● Accuracy

1 0

1 TP FP

0 FN TN

pr
ed

ic
te

d 
la
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ls

actual labels 

39
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Classification: Evaluation — Popular Metrics
● Precision, Recall, F1 Score

1 0

1 TP FP

0 FN TN

1 0

1 TP FP

0 FN TN

1 0

1 TP FP

0 FN TN

pr
ed

ic
te

d 
la

be
ls

actual labels actual labels actual labels 

pr
ed

ic
te

d 
la

be
ls

pr
ed

ic
te

d 
la

be
ls

Harmonic Mean of 
Precision and Recall



In-Lecture Activity (5 mins)

41

● Question: Why do we calculate the F1 score using the Harmonic Mean?
■ Post your solution to Canvas > Discussions

(individually or as a group; include all group members' names in the post)

Why the Harmonic Mean? Why not, e.g., Average?
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Classification: Evaluation — Why so Many Measures?
● Problem: (Highly) imbalanced datasets

● Example use case: COVID-19 test (binary "classifier")

■ Most people in a population are not infected

■ Assume a test that always(!) returns "negative"

1 0

1 0 0

0 200 10,000 ➜ Very high accuracy despite "useless" test

actual labels 
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Classification: Evaluation — Why so Many Measures?
● Observation: FP and FN not

always equally problematic

● Example: Suicide prediction
(e.g., from social media content posted by users)

■ BAD: misclassifying a high-risk person

■ OK-ish: misclassifying a healthy person

● Example: News article classification
(e.g., for search engines such as Google News)
■ BAD: showing article of wrong category

■ OK: missing a relevant article in result

Recall  >  Precision

Recall  <  Precision
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Classification: Evaluation — Beyond 2 Classes
● Example: 3 classes, 50 samples 

2 1 0

2 8 6 0

1 3 12 1

0 4 2 14

actual labels 
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ls
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Multiclass Evaluation — One-vs-Rest Confusion Matrices 
● Example:

2 1 0

2 8 6 0

1 3 12 1

0 4 2 14

2 2

2 8 6

2 7 29

1 1

1 12 4

1 8 26

0 0

0 14 6

0 1 29

2-vs-Rest

1-vs-Rest

0-vs-Rest

actual labels 
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One-vs-Rest — Micro Averaging
2 2

2 8 6

2 7 29

1 1

1 12 4

1 8 26

0 0

0 14 6

0 1 29

C C

C 11.33 5.33

C 5.33 28

Average over all
TP, FP, FN, TN
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One-vs-Rest — Macro Averaging
2 2

2 8 6

2 7 29

1 1

1 12 4

1 8 26

0 0

0 14 1

0 6 29

Average over 
all metrics
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One-vs-Rest — Macro vs. Micro Averaging
● Both methods use One-vs-Rest confusion matrices

■ All introduced metrics applicable

● Micro-averaging
■ Averaging over TP, FP, FN, TN values of all One-vs-Rest confusion matrices

■ Favors bigger classes (since average over counts)

● Macro-averaging
■ Averaging over metrics derived from each One-vs-Rest confusion matrix 

■ Treats all class equally (since metrics are normalized)



49

Quick Quiz

A 2-class classifier and a 10-class 
classifier have a f1-score of 0.6: 

Which classifier does a better job?

The 10-class classifier

The 2-class classifier

Not comparable

Both are equally good
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Vector Space Model — Motivation 

51

● Most algorithms do not work on raw text 
— common requirements
■ Numerical input

■ Standardized/canonical input

● Feature extraction ➜ vectorization of text data
■ Represent each text document as a vector of equal size

■ Vector elements = numerical values derived from text 

51

(0.42, 0.02, 0.53, 0.91, 0.21, 0.74, 0.04, …, 0.16, 0.76)

???
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"Manual" Approach — Handcrafted Features
● Example: Sentiment Analysis

■ Length of text document (number of tokens or characters)

■ Number of positive and negative emoticons

■ Number of words associated with positive or negative mood

● 2 movie reviews
■ R1: "The movie was so boring - I hated it after just 20 minutes! :((("

■ R2: "Dune is a such a brilliant and beautiful movie!"

52

#char #tokens #emoticons+ #emoticons- #words+ words-

R1 64 15 0 1 0 2

R2 47 10 0 0 2 0

Finding good features 
can be tricky in practice



➜ weight          : matrix value 
depending on  representation

Vector Space Model
● Idea: Vectorize documents based on vocabulary (➜ BoW representation)

■ Length each document vector is the size of corpus vocabulary

■ Vectors for all documents in dataset      form the document-term matrix

● Document-term matrix
■ Set of documents

■ Set of unique terms  

53

d1 d2 d3 d4 d5 … d|D|
t1
t2
t3
t4 w4,2

…

t|V|



Vector Space Model — Example Corpus

54

d1 : Dogs chase cats and other dogs.

d2 : Cats chase other cats.

d3 : There is a car chase on the TV.

d4 : My dog watches other dogs on TV.

d5 : My dog and cat sit in the car.

d1 : dog chase cat dog

d2 : cat chase cat

d3 : car chase tv

d4 : dog watch dog tv

d5 : dog cat sit car

Normalization steps:
● Removal of non-words
● Removal of stopwords
● Case-folding (lowercase)
● Lemmatization

➜ Vocabulary     = {car, cat, chase, dog, sit, tv, watch}



Document-Term Matrix with Binary Weights
● Matrix elements are either 0 or 1

■                 : document    contains term

■                 : otherwise

● Interpretation
■ Weights reflect presence or absence

of a term in a document

■ No differentiation between
words of a document

■ Suitable for basic filtering of documents
(e.g., find all documents containing "dog")

55

d1 : dog chase cat dog
d2 : cat chase cat
d3 : car chase tv
d4 : dog watch dog tv
d5 : dog cat sit car

d1 d2 d3 d4 d5
car 0 0 1 0 1

cat 1 1 0 0 1

chase 1 1 1 0 0

dog 1 0 0 1 1

sit 0 0 0 0 1

tv 0 0 1 1 0

watch 0 0 0 1 0



Document-Term Matrix with Term Frequencies
● Matrix elements are integers

■          : #occurences of term    in document

● Interpretation
■ Assumption: more frequent terms in

a document are more important

56

d1 : dog chase cat dog
d2 : cat chase cat
d3 : car chase tv
d4 : dog watch dog tv
d5 : dog cat sit car

d1 d2 d3 d4 d5
car 0 0 1 0 1

cat 1 2 0 0 1

chase 1 1 1 0 0

dog 2 0 0 2 1

sit 0 0 0 0 1

tv 0 0 1 1 0

watch 0 0 0 1 0

BUT: Does "more frequent" 
always mean "more important"?

➜ term frequency



        as a Indicator for a Term's Importance
● Consideration 1: Relative importance

■ Assume 2 documents       and       containing the term "NLP"

■      contains "NLP" 100 times,      contains "NLP" 10 times

57

➜        more important than        w.r.t. "NLP" ✓

But is       really 10x more important than      ?

➜  Extension: Use a sublinear function to model importance based on 
■ Common: logarithm

■ Different functions possible
and not always required



        as a Indicator for a Term's Importance
● Consideration 2: Cross-document importance

■ Assume a document       containing the term "NLP" many times

■ Let "NLP" also be frequent in many to most other documents

● Intuition — example: "dog watch dog tv"
■ "dog" appears 2x in the document, but also in 3/5 of the other documents

■ "watch" appears 1x in the document, but also only in this document

58

Is "NLP" really important (i.e., characteristic, informative) for      ?



59

➜  Extension: Inverse Document Frequency         as additional factor  
■ Document frequency       : #document containing       

■ Inverse measure of a terms importance, relevance, informativeness

        as a Indicator for a Term's Importance

➜ Inverse Document Frequency:

Again, log to dampen the effect of 
the inverse document frequency



Document-Term Matrix with              Weights
● Putting it all together

● Side notes
■ No real theoretic underpinning, but              works best in practice

■ Not all definitions of              apply a sublinear scaling of

■ Alternative names:              ,   

■ There are different weighting functions for calculating

60



● Example

61

d1 : dog chase cat dog
d2 : cat chase cat
d3 : car chase tv
d4 : dog watch dog tv
d5 : dog cat sit car

Document-Term Matrix with              Weights



Document-Term Matrix with              Weights
● Matrix elements =             weights

62

d1 : dog chase cat dog
d2 : cat chase cat
d3 : car chase tv
d4 : dog watch dog tv
d5 : dog cat sit car

d1 d2 d3 d4 d5
car 0 0 0.4 0 0.4

cat 0.22 0.29 0 0 0.22

chase 0.22 0.22 0.22 0 0

dog 0.29 0 0 0.29 0.22

sit 0 0 0 0 0.7

tv 0 0 0.4 0.4 0

watch 0 0 0 0.7 0

➜
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Vector Space Model — Document Similarity
● Vector Space Model

■       -dimensional vector space

■ Words are axes (i.e., dimensions) of the space
(each word in vocabulary represent a axis/dimensions)

■ Documents are points or vectors in this space

■ In practice: very high-dimensional space
(typically tens of thousands of dimensions)

64

➜ Document vectors are typically very sparse
     (i.e., most entries in the vectors are zero)

➜  How can we calculate the similarity between text documents 
■ Many NLP tasks rely on "some meaningful" metric quantifying document similarity

■ Using Vector Space Model:     document similarity  ➜  vector similarity



Document Similarity
● Approach 1: Dot Product

■ The dot product between two vectors     and       is defined as

● Interpretation
■                  is high if     and       have large values in the same dimensions

65

➜                   represents a similarity metric between vectors, but…



Document Similarity
● Limitations of Dot Product

■                 is higher if a vector has 
higher values in many dimensions

● Effects in document vectors
■                  favors frequent words

(since they occur many times with other documents)

■                  favors long documents
(since the raw term frequencies are higher)

66

➜                   favors long vectors

➜                   overly favors frequent words



Document Similarity — Cosine Similarity 
● Approach 2: Cosine Similarity (dot product normalized by length of vectors)

● Geometric interpretation
■                      measures the

angle between vectors

67

                 cares about 
     angle and length



Document Similarity — Cosine Similarity
● Cosine as a similarity metric

■                                   
vectors point in opposite directions

■
vectors point in the same direction

■
vectors are orthogonal

● Cosine similarity for document vectors
■ Vector entries are all positive

68

➜



Document Similarity — Cosine Similarity

69

d1 : dog chase cat dog
d2 : cat chase cat
d3 : car chase tv
d4 : dog watch dog tv
d5 : dog cat sit card1 d2 d3 d4 d5

car 0 0 0.4 0 0.4

cat 0.22 0.29 0 0 0.22

chase 0.22 0.22 0.22 0 0

dog 0.29 0 0 0.29 0.22

sit 0 0 0 0 0.7

tv 0 0 0.4 0.4 0

watch 0 0 0 0.7 0

(only non-zero components included)



Document Similarity — Cosine Similarity

70

d1 d2 d3 d4 d5
car 0 0 0.4 0 0.4

cat 0.22 0.29 0 0 0.22

chase 0.22 0.22 0.22 0 0

dog 0.29 0 0 0.29 0.22

sit 0 0 0 0 0.7

tv 0 0 0.4 0.4 0

watch 0 0 0 0.7 0

d1 d2 d3 d4 d5
d1 1 0.72 0.19 0.23 0.31

d2 1 0.22 0 0.20

d3 1 0.31 0.31

d4 1 0.09

d5 1

d1 : dog chase cat dog
d2 : cat chase cat
d3 : car chase tv
d4 : dog watch dog tv
d5 : dog cat sit car

All pairwise
cosine similarities



Vector Space Model
● Representing documents as vectors

■ Meaningful way to compute similarities between documents
(e.g., for ranking documents in information retrieval, clustering)

■ Valid input for other text classifiers beyond Naive Bayes
(document vectors have no numerical values)

● Limitation: BoW representation of documents
■ Does not consider sequential order of words in a sentence
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Outline
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● Text Classification
■ Common Applications
■ Formal setup

● Naive Bayes Classifier
■ Basic Intuition & BoW Representation
■ Definition & Practical Considerations
■ Complete Runthrough
■ Discussion & Limitations

● Evaluation of Classifiers

● Vector Space Model
■ Vector Representation of Documents
■ Document Similarity
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Summary
● Text Classification

■ Very fundamental NLP task
(very fundamental machine learning task, in general)

■ Supervised machine learning task ➜ we need training data

● Baseline classifier: Naive Bayes
■ Very simple classifier related to language models ➜ works directly over words

■ Relies on Bag-of-Word Representation of documents (incl. its limitations)

● Vector Space Model
■ Derive meaningful vector representation of documents from their vocabulary

■ Definition of meaningful similarity between documents ➜ import for many NLP tasks
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Pre-Lecture Activity for Next Week
● Assigned Task (due before Jan 23)

■ Post a 1-2 sentence answer to the following question into the L2 Discussion on Canvas

"What is a common myth about neural networks?"

Side notes:
● This task is meant as a warm-up to provide some context for the next lecture
● No worries if you get lost; we will talk about this in the next lecture
● You can just copy-&-paste others' answers but his won't help you learn better

Read some blog posts or online articles, and cite them with the links in your answer



Solutions to Quick Quizzes
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● Slide 3
■ Training and test corpus must have the same sizes – otherwise no meaningful comparison

● Slide 19: B
■ Document classification typically works well based on presence/absence of words

■ 2nd: Sentiment Analysis (often a document classification task but typically relies not on linguistic phenomena such as negation)

● Slide 33
■ Example: "The movie was not funny but good" ➜ "The movie was not NOT_funny NOT_but NOT_good"

■ In practice, improved heuristics (e.g., special consideration of conjunctions: and, or, but, …)

● Slide 49: B
■ Predicting the correct class out of 10 typically easier then out of 2

■ Assume random guessing:   2 classes ➜ ~50% correct   vs.   10 classes ➜ ~50% correct


