

CS4248: Natural Language Processing

Lecture 3 — n-Gram Language Models

What do you want to learn?

- "Understanding LLMs such ChatGPT"
 - Provocative statement: Nobody really <u>understands</u> LLMs, i.e., <u>why/how</u> they work!
 - The way to understand LLMs requires a lot of background which we will cover
 - We end with an introduction into LLMs, but they are not and can not be the focus of CS4248 (a dedicated graduate course covering LLMs is currently in the planning/preparation stage – stay tuned!)
 - In practice, fine-tuning LLMs is much more about proper data preparation than the actual training

What do you want to learn?

- HuggingFace, Langchain, Tensorflow, PyTorch, scikit-learn, numpy, etc.
 - The lecture content focusing on the fundamental concept, not specific tools and libraries
 - We provide many practical examples in our series supplementary <u>notebooks</u>
 - You are free and encouraged to explore any available tools/frameworks/libraries for your project

Your Concerns — Our Comments

- "I'm a total NLP/ML noob"
 - CS4248 is a introduction / foundation course we basically start from scratch
 - While some background knowledge is certainly useful, it's not a requirement
 - We only focus on nitty-gritty details required for this course (e.g., we do not cover backpropagation)
- "I'm worried that there will be lots of math."
 - Yes, there will be math, but nothing beyond <u>fundamental</u> concepts of algebra, probability, calculus
 - What need we need in this course, you will need in <u>any</u> computer/data science field!
 - We hope we cover the math bits in sufficient detail and clarity (if not, you can always ask!)

Your Concerns — Our Comments

- "I've heard this course is hard!", "I'm afraid of the workload."
 - Bias alert: We don't think that CS4248 is harder (or easier) than other courses
 - The assessment components are very similar to other course participation marks are basically free marks :)
 - Consider assignments not just as an assessment component but as a learning experience
- "I'm worried about the project."
 - With reasonable effort, it is almost impossible to "fail" the project we don't expect SOTA results :)
 - Basic suggestions: start early, continuous progress, regular team meetings (and/or with TA)
 - The project provides some flexibility to cater your background and interests
 - You can and should raise any inter-group conflicts incl. non-contributing members (there will be 2 rounds of peer review sessions using TEAMMATES!)

Recap of Week 02

6

Outline

• Language Models

- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges

• Smoothing

- Laplace Smoothing
- Backoff & Interpolation
- Kneser-Ney Smoothing

• Evaluating Language Models

Pre-Lecture Activity from Last Week

• Assigned Task

 Post a 1–2 sentence answer to the following question into the L1 Discussion (you will find the thread on Canvas > Discussions)

"What do we mean when we talk about the probability of a sentence?"

Side notes:

- This task is meant as a warm-up to provide some context for the next lecture
- No worries if you get lost; we will talk about this in the next lecture
- You can just copy-&-paste others' answers, but his won't help you learn better

Pre-Lecture Activity from Last Week

Language Models — Motivation

• Which sentence makes more sense? S_1 or S_2 ?

Example 1: S_1 : "on guys all I of noticed sidewalk three a sudden standing the" S_2 : "all of a sudden I noticed three guys standing on the sidewalk" S_2 : "the role was played by an acress famous for her comedic timing"Example 2: S_2 : "the role was played by an acress famous for her comedic timing"

- But why?
 - Probability of S_2 higher than of S_1 : $P(S_2) > P(S_1)$

→ Language Models — Assigning probabilities to a sentence, phrase (or word)

Language Models — Basic Idea

• 2 basic notions of probabilities

(1) Probability of a sequence of words $P(W) = P(w_1, w_2, w_3, \dots, w_n)$ Example: P("remember to submit your assignment")

(2) Probability of an upcoming word w_n $P(w_n \mid w_1, w_2, w_3, \dots, w_{n-1})$ Example: $P("assignment" \mid "remember to submit your")$

In this lecture: How to calculate these probabilities?

Language Models — Applications

- Language Models are fundamental for many NLP tasks
 - **Speech Recognition** P("we built this city on rock and roll") > P("we built this city on sausage rolls")
 - **Spelling correction** P("... has no mistakes") > P("... has no <u>mistakes"</u>)
 - Grammar correction P("...has improve") > P("...has improve")
 - Machine Translation P("I went home") > P("I went to home")

Outline

• Language Models

- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges

• Smoothing

- Laplace Smoothing
- Backoff & Interpolation
- Kneser-Ney Smoothing

• Evaluating Language Models

Probabilities of Sentences (more generally: sequence of words)

P("remember to submit your assignment") P("assignment"|"remember to submit your")

→ How to calculate those probabilities?

• Quick review: Chain Rule (allows the iterative calculation of joint probabilities) $7(A_1, A_2) - P(A_2)$

Chain rule for 2 random events:

Chain rule for 3 random events:

 $P(A_1, A_2) = P(A_2|A_1) \cdot P(A_1)$ $P(A_1, A_2, A_3) = P(A_3|A_1, A_2) \cdot P(A_1, A_2)$ $= P(A_3|A_1, A_2) \cdot P(A_2|A_1) \cdot P(A_1)$

...

Probabilities of Sentences

• Chain rule — generalization to *N* random events

$$P(A_1, \dots, A_N) = \underbrace{P(A_1)}_{N} \cdot P(A_2|A_1) \cdot P(A_3|A_{1:2}) \cdot \dots \cdot P(A_N|A_{1:N-1})$$
$$= \prod_{i=1}^{N} P(A_i|A_{1:i-1})$$
$$i:j - \text{sequence notations}$$

→ Chain rule applied to sequences of words

$$P(w_1, \dots, w_N) = P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_{1:2}) \cdot \dots \cdot P(w_N|w_{1:N-1})$$
$$= \prod_{i=1}^N P(w_i|w_{1:i-1})$$

🏃 🏃 🏃 Probably Correct? (5 mins)

Given two random variables X and Y with known probabilities P(X) and P(Y), compose as many statements with the tokens:

$$P(X) \quad P(Y) \quad P(Y|X) \quad P(X|Y) \quad > \ < \ =$$

And classify them as always correct, sometimes correct or never correct.

Post your answer to Canvas > Discussions > [In-Lecture Interaction] L1 (One student of your group can post the reply, and make sure to include your group members' names)

Probabilities of Sentences

• Calculating the probabilities using Maximum Likelihood Estimations

 $\underbrace{\sum_{w} Count(w_{1:n-1}w_n)}_{\sum_{w} Count(w_{1:n-1}w)} = \frac{Count(w_{1:n})}{Count(w_{1:n-1})}$ $P(w_n|w_{1:n-1})$

Quick quiz: Why does the denominator simplify like this?

Probabilities of Sentences — Example

(1) Application of Chain Rule

 $P("remember to submit your assignment") = P("remember") \cdot P("to" | "remember") \cdot P("submit" | "remember to") \cdot P("your" | "remember to submit") \cdot P("your" | "remember to submit") \cdot P("assignment" | "remember to submit your")$

(2) Maximum Likelihood Estimation

$$P("to" \mid "remember") = \frac{Count("remember")}{N}$$

$$P("to" \mid "remember") = \frac{Count("remember to")}{Count("remember")}$$
....

 $\frown P("assignment" \mid "remember to submit your") = \frac{Count("remember to submit your assignment")}{Count("remember to submit your")}$

Probabilities of Sentences — Problems $\sqrt{=30}$

 $P("assignment" \mid "remember to submit your") = \frac{Count("remember to submit your assignment")}{Count("remember to submit your")}$

- Problem: (very) long sequences
 - Large number of entries in table with joint probabilities
 - A sequence (or subsequence) w_{i:j} may not be present in corpus

$$\rightarrow Count(w_{i:j}) = 0 \quad \Rightarrow \quad \prod_{n=1}^{N} P(w_n | w_{1:n-1}) = 0$$

(we can ignore $\frac{0}{0}$ here; this can be handled in the implementation)

Outline

• Language Models

- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges

• Smoothing

- Laplace Smoothing
- Backoff & Interpolation
- Kneser-Ney Smoothing

• Evaluating Language Models

AMERICAN Scientist

"The first application of [A. A. Markov's chains] was to a textual analysis of Alexander Pushkin's poem Eugene Onegin. Here a snippet of one verse appears (in Russian and English) along with Pushkin's own sketch of his protagonist Onegin."

Markov Assumption

• Probabilities depend on only on the last k words

$$P(w_1, \dots, w_N) = \prod_{n=1}^{N} P(w_n | w_1, \dots, u_n) = \prod_{n=1}^{N} P(w_n | w_{n-k:n-1})$$
example:

• For our example:

 $P("assignment" \mid "remember to submit your") \approx P("assignment" \mid "your")$ $P("assignment" \mid "submit your")$ $P("assignment" \mid "to submit your")$

...

n-Gram Models (consider the only *n-1* last words)

Bigram (2-gram): $P(w_n|w_{1:n-1}) \approx ???$

Trigram (3-gram): $P(w_n | w_{1:n-1}) \approx ???$

Unigram (1-gram): $P(w_n|w_{1:n-1}) \approx ???$ $P(V_n)$ $P(w_{n}|W_{n})$ $T(\omega_{n}) W_{n-1}, W_{n-z})$

n-Gram Models (consider the only *n-1* last words)

Unigram (1-gram): $P(w_n|w_{1:n-1}) \approx P(w_n)$

Bigram (2-gram): $P(w_n|w_{1:n-1}) \approx P(w_n|w_{n-1})$

Trigram (3-gram): $P(w_n | w_{1:n-1}) \approx P(w_n | w_{n-2}, w_{n-1})$

Quick quiz: How does this relate to context-sensitive or context-free?

n-Gram Models

V=30K

Maximum Likelihood Estimation

 \sim

- n-Gram models in practice
 - 3-gram, 4-gram, 5-gram models very common

The larger the n-grams, the more data required

To Think About: How much more data?

n-Gram Models — Bigram Example

Example corpus with 3 sentences <s> I am Sam </s> <s> Sam I am </s> <s> I do not like green eggs and ham </s>

$$P("I"|" < s > ") = \frac{Count(" < s > I")}{Count(" < s > ")} =$$

$$P(``am"|``I") = \frac{Count(``I am")}{Count(``I")} =$$

$$P("Sam"|"am") = \frac{Count("am Sam")}{Count("am")} =$$

$$P(``"|``Sam") = \frac{Count(``Sam < /s>")}{Count(``Sam")} =$$

n-Gram Models — Bigram Example

Example corpus with 3 sentences

$$P("I"|" < s > ") = \frac{Count(" < s > I")}{Count(" < s > ")} = \frac{2}{3}$$

$$P("am"|"I") = \frac{Count("I am")}{Count("I")} = \frac{2}{3}$$

$$P("am"|"I") = \frac{Count("I am")}{Count("I")} = \frac{2}{3}$$

$$P("Sam"|"am") = \frac{Count("am Sam")}{Count("am")} = \frac{1}{2}$$

$$P(" "|"Sam") = \frac{Count("Sam ")}{Count("Sam")} = \frac{1}{2}$$

n-Gram Models — Bigram Example (25,000 Movie Reviews)

 $P(" < s > i \ like \ the \ story \ </s >") = ???$

i like the story 87.185 19.862 33.0867 11.094	Unigram counts:							
87.185 19.862 33.0867 11.094	i	like	the	story				
	87,185	19,862	33,0867	11,094				

Bigram counts: like i. the story f 1 693 20 0 like 326 3 1,997 8 the 15 42 148 5171 23 16 16 0 story

n-Gram Models — Bigram Example (25,000 Movie Reviews)

$$P("<\!s\!>\!i like the story <\!/s\!>") = ???$$

Unigram counts:

i	like	the	story
87,185	19,862	33,0867	11,094
	1	-	

Bigram counts:

 \mathcal{N}

				· · · · · ·	
		i	like	the	story
	i	0	693	20	0
) (म	like	326	0	1,997	8
	the	15	42	0	5,171
	story	23	16	16	0

Bigram probabilities:

	i		the	story
i	0.0	0.007949	0.000229	0.0
like	0.016413	0	0.100544	0.000403
the	0.000045	0.000127	0.0	0.015629
story	0.002073	0.001442	0.001442	0.0

Example calculation: $P("like"|"i") = \frac{Count("i \ like")}{Count("i")} = \frac{693}{87185}$ = 0.007949

n-Gram Models — Bigram Example (25,000 Movie Reviews)

Bigram probabilities:

n-Gram Models — Practical Consideration

- In general
 - Each $P(w_n|w_{1:n-1})$ rather small $\rightarrow \prod P(w_n|w_{1:n-1})$ very small

N

n=1

Risk of arithmetic underflow

→ Always use an equivalent logarithmic format

Logarithm is a strictly monotonic function

$$P_1 \cdot P_2 \cdot P_3 \cdot ... P_N \propto \log \left(P_1 \cdot P_2 \cdot P_3 \cdot ... P_N \right)$$

= log P_1 + log P_2 + log P_3 \cdot ... log P_N

In-Lecture Activity

🏃 🏃 🏃 In-Lecture Activity (5 mins)

- Task: Calculate the Probability **P("saw"|"alice")** given the table of bigram counts below
- Post your answer to Canvas > Discussions > [In-Lecture] L1 ... (Feb 2)

(One student of your group can post the reply. Make sure to include your group members' names)

alice accident	5	\neg
saw alice	5	
alice the	15	
alice saw	20	P
saw the	25	
accident saw	1	
accident alice	2	

Outline

• Language Models

- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges

Smoothing

- Laplace Smoothing
- Backoff & Interpolation
- Kneser-Ney Smoothing

• Evaluating Language Models

Handling OOV Words — Closed vs. Open Vocabulary

- Closed vocabulary
 - All strings contain words from a fixed vocabulary

Open Vocabulary

No unknown words

- Strings may contain words that are not in the vocabulary (**oov** words)
- Examples: proper nouns, mismatching context

Counts might be 0 (even for individual words and not just for long(er) sequences of words)

Movie review dataset — Unigram counts:

i	like	the	story	costner	einstein	planck	biden	integral	adverb	tensor	nlp
87,185	19,862	33,0867	11,094	67	20	0	0	27	0	0	0

Handling OOV Words — Alternatives

- Special token for OOV words____
 - During normalization, replace all OOV words with a special token (e.g., <<u>UNK</u>>)
 - Estimate counts and probabilities for sequences involving <UNK> like for regular word
- Subword tokenization (e.g., with Byte-Pair Encoding (BPE) Week 02)
 - Split texts into tokens smaller than words
 - Tokens are more likely to be frequent

Break

🔍 (🛤 r/coolguides) Search Reddit

29.7k 🖑 🛛 🗷 Contronyms, rare would that have two, opposite, meanings.

Posted by u/Gallagher202 2 years ago 👸

29.7k Contronyms, rare would that have two, opposite, meanings.

What is a contronym?

Single words that have two contradictory meanings (they are their own opposites) are known as contronyms, and they are quite rare. Here are ten of them:

- 1. apology: a statement of contrition for an action, or a defence of one
- 2. bolt: to secure, or to flee
- bound: heading to a destination, or restrained from movement
- 4. cleave: to adhere, or to separate
- 5. dust: to add fine particles, or to remove them
- 6. fast: quick, or stuck or made stable
- 7. left: remained, or departed
- 8. peer: a person of the nobility, or an equal
- 9. sanction: to approve, or to boycott

10. weather: to withstand, or to wear away

Mysophobia is the fear of germs (aka germophobia or bacterophobia).

9	QI - Quite Interestie April 11, 2018 - @		
For ins	stance, dust can mea	rd with two definitions to n to cover with dust, bu t seeds, but also to rem	t also to remove dust,
• 2			Comments 624 Share
	🖒 Like	Comment	📣 Share
			Most relevant +
۲	Angharad Jones 'Fast' can mean to r (stuck fast, fast ask	nove quickly or to be se sep, fastened).	cured in place
	Like Reply 3y		2 30
	9 3 Replies		
-	Josh Wi "The alarm just wen "Well turn it off ther		
100	Like Heply 3y		
	John Pettigrew Screen to show som view	nething or screen to hid	
	Like Reply 3y		27
•		d "dela" means both "sl normous confusion wh	en talking about
	Like Beply 3y 14 1 Reply		29 10
*	Kevin Michael Cleave can mean to Like Reply 3y 14 4 Replies	both join and separate	
Ð		nation? collect me?" "Sure" different answer if sarca	
	Like Roply 3y Er 14 1 Reply	Prof.	9 2
8		s "I'm sure" it so often ed th the stove off". Bu	
	Like Beply 2y		
0		e for your language sup an the usual synonyms	
	Like Reply 3y		0
	9 1 Reply		17

YOU KEEP USING THAT WORD

I DO NOT THINK IT MEANS WHAT YOU THINK IT MEANS

Outline

• Language Models

- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges

• Smoothing

- Laplace Smoothing
- Backoff & Interpolation
- Kneser-Ney Smoothing

• Evaluating Language Models

Smoothing

- Basic idea
 - Avoid assigning probabilities of 0 to unseen n-grams
 - "Move" some probability mass from more frequent n-grams to unseen n-grams
 - Also called: discounting

Basic method: Laplace Smoothing (also: Add-1 Smoothing)

hallucinate

Example for bigrams

	i	like	the	story
i	0	693	20	0
like	326	0	1,997	8
the	15	42	0	5,171
story	23	16	16	0

	i	like	the	story
i	1	69 4	21	1
like	32 <mark>7</mark>	1	1,99 <mark>8</mark>	9
the	1 <mark>6</mark>	4 <mark>3</mark>	1	5,17 <mark>2</mark>
story	24	17	17	1

• Calculating the probabilities

$$P_{Laplace}(w_{n}|w_{1:n-1}) = \frac{Count_{Laplace}(w_{1:n-1}w_{n})}{\sum_{w} Count_{Laplace}(w_{1:n-1}w_{n})}$$

$$\frac{Count(w_{1:n-1}w_{n}) + 1}{\sum_{w} [Count(w_{1:n-1}w_{n}) + 1]}$$

$$= \frac{Count(w_{1:n-1}w_{n}) + 1}{Count(w_{1:n-1}) + V}$$

e.g., for bigrams:
$$P_{Laplace}(w_n|w_{n-1}) = \frac{Count(w_{n-1}w_n) + 1}{Count(w_{n-1}) + V}$$

• Effects of smoothing on probabilities

Bigram probabilities (without Laplace Smoothing):

	i	like	the	story
i	0.0	0.007949	0.000229	0.0
like	0.016413	0	0.100544	0.000403
the	0.000045	0.000127	0.0	0.015629
story	0.002073	0.001442	0.001442	0.0

Bigram probabilities (with Laplace Smoothing):

	i	like	the	story
i	0.000006	0.004075	0.000123	0.000006
like	0.003175	0.000010	0.019401	0.000087
the	0.000039	0.000104	0.000002	0.012493
story	0.000255	0.000180	0.000180	0.000011
		1		1

• Observations

- No zero probabilities (duh!)
- Some non-zero probabilities have changed quite a bit!
- → For some n-grams: (arguably) too much probability gets moved to zero probabilities

- Effects of smoothing on counts
 - Question: What counts without smoothing would yield $P_{Laplace}(w_i|w_{i-1})$?

$$P_{Laplace}(w_n|w_{n-1}) = \frac{Count(w_{n-1}w_n) + 1}{Count(w_{n-1}) + V} = \frac{Count^*(w_{n-1}w_n)}{Count(w_{n-1})}$$

$$\quad \bullet \quad Count^*(w_{n-1}w_n) = (Count(w_{n-1}w_n) + 1) \cdot \frac{Count(w_{n-1})}{Count(w_{n-1}) + V}$$

Bigram counts (original):

	i	like	the	story	
i	0	693	20	0	
like	326	0	1,997	8	
the	15	42	0	5,171	
story	23	16	16	0	

Bigram counts (<u>adjusted</u>):

	i	like	the	story
i	0.51	355.28	10.75	0.51
like	63.07	0.19	385.34	1.74
the	12.79	34.37	0.80	4133.5
story	2.83	2.00	2.00	0.12

- Laplace Discount
 - d_c ratio of adjusted counts to the original counts
 - Only defined where original counts > 1

$$d_c = \frac{Count^*(w_{n-1}w_n)}{Count(w_{n-1}w_n)}$$

	i	like	the	story
i		0.51	0.54	
like	0.19		0.19	0.22
the	0.85	0.82		0.80
story	0.12	0.13	0.13	

Laplace discounts:

Add-*k* Smoothing

- Generalize Laplace (Add-1) Smoothing
 - Add k instead of 1
 - Set $0 < k \leq 1$

$$P_{add-k}(w_n|w_{n-1}) = \frac{Count(w_{n-1}w_n) + k}{Count(w_{n-1}) + kV}$$

Outline

• Language Models

- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges

• Smoothing

- Laplace Smoothing
- Backoff & Interpolation
- Kneser-Ney Smoothing
- Evaluating Language Models

Backoff & Interpolation

- Intuition: Utilize less context if required
 - Assume we want to calculate $P(w_n|w_{n-2}, w_{n-1})$ but trigram $w_{n-2}w_{n-1}w_n$ is not in the dataset

(1) Backoff

- Make use if bigram probability $P(w_n|w_{n-1})$
- If still insufficient, use unigram probability $P(w_n)$

(2) Interpolation

- Estimate $P(w_n|w_{n-2}, w_{n-1})$ as a weighted mix of trigram, bigram, and unigram probabilities
- Learn weights λ_i from data
- In practice, better than Backoff

Linear Interpolation (example for trigrams)

• Simple interpolation

$$\hat{P}(w_n)w_{n-2}, w_{n-1}) = \lambda_1 P(w_n) + \lambda_2 \overline{P}(w_n|w_{n-2}, w_{n-1}) + \lambda_3 P(w_n|w_{n-2}, w_{n-1})$$

• λ_i conditioned on context

$$\hat{P}(w_{n}|w_{n-2}, w_{n-1}) = \begin{array}{c} \lambda_{1}(w_{n-2}, w_{n-1}) P(w_{n}) + \\ \lambda_{2}(w_{n-2}, w_{n-1}) P(w_{n}|w_{n-1}) + \\ \lambda_{3}(w_{n-2}, w_{n-1}) P(w_{n}|w_{n-2}, w_{n-1}) \end{array}$$

C.

Backoff & Interpolation

- Learn weights λ_i from data basic idea
 - (1) Collect held-out corpus
 - Additional corpus or
 - Split from initial corpus
 - (2) Calculate all n-gram probabilities
 - Calculation must not consider any held-out corpus!
 - (3) Find λ_i that maximizes $\hat{P}(w_n|w_{n-2}, w_{n-1})$ over held-out corpus
 - e.g., using Expectation-Maximization (EM) algorithm (not further discussed here)

Outline

• Language Models

- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges

• Smoothing

- Laplace Smoothing
- Backoff & Interpolation
- Kneser-Ney Smoothing
- Evaluating Language Models

Kneser–Ney Smoothing

Idea of Kneser–Ney Smoothing: Absolute Discounting Interpolation

Note: We only look at a bigram language model in the following to keep the examples and notations easy. Kneser-Ney Smoothing is analogously defined for larger n-grams.

Kneser–Ney Smoothing — Absolute Discounting

- Absolute discounting
 - Remove fixed value d from bigram counts (typically: 0 < d < 1)
 - Makes probability mass for unigrams available
 - Intuition
 - If $Count(w_{n-1}w_n)$ is large, count is hardly affected If $Count(w_{n-1}w_n)$ is small, count is not that useful to begin with

iust a fail-safe to avoid negative probabilities $max[Count(w_{n-1}w_n)-d,0]$ $Count(w_{n-1})$

 \rightarrow Question: How to pick the value(s) for d ?

Kneser–Ney Smoothing — Absolute Discounting

- Approach by Church and Gale (1991)
 - Compute bigram counts over large training corpus
 - Compute the counts of the same bigrams over a large test corpus
 - Compute the average count from the test corpus with respect to the count in the training corpus

On average, a bigram that occurred 5 times in the training corpus occurred 4.21 times in the test corpus

Bigram count in training corpus	Bigram count in test corpus
0	0.000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

ightarrow Set d=0.75 (maybe a bit smaller for counts of 1 and 2)

Source: <u>A comparison of the enhanced Good-Turing and deleted estimation methods for estimating probabilities of English bigrams</u> (Church and Gale, 1991)

Kneser-Ney Smoothing — Interpolation with a Twist

Motivation

$$P_{KN}(w_n|w_{n-1}) = \frac{max \left[Count(w_{n-1}w_n) - d, 0\right]}{Count(w_{n-1})} + \lambda(w_{n-1})P(w_n)$$

Using basic interpolation, that would just be the unigram probability

→ But is this actually a good idea?

Kneser-Ney Smoothing — Interpolation with a Twist

- The difference between "glasses" and "Kong" Intuition
 - *"glasses"* is preceded by many other words
 - "Kong" almost only preceded by "Hong"

→ P(w) = "How likely is w ?" ... Maybe not most intuitive approach

- Alternative: $P_{KN}(w) =$ "How likely is w to appear as a novel continuation?"
 - $P_{KN}(w)$ is high \Leftrightarrow there are many words w' that form an existing bigram w'w
 - $P_{KN}(w)$ is low \Leftrightarrow there are <u>only few words</u> w' that form an existing bigram w'w
 - → How can we quantify this?

Kneser-Ney Smoothing — Interpolation with a Twist

🏃 🏃 🏃 In-Lecture Activity (5 mins)

- Task: find 5+ words where you would expect that $P_{KN}(w) > P(w)$
 - Post your answer to Canvas > Discussions > [In-Lecture] L1 ... (2 Feb) (one student of your group can post the reply, but include your group members' names)
 - We already used "Kong" as an example, so try to avoid "Francisco", "Angeles", "Aires", etc. :)
 - Optional: Think about how the context matters (e.g., travel blogs vs. movie reviews)

Pro Tip: It's not a competition, but about discussions and sharing ideas

Kneser-Ney Smoothing — Wrapping it Up

$$P_{KN}(w_n|w_{n-1}) = \frac{max \left[Count(w_{n-1}w_n) - d, 0\right]}{Count(w_{n-1})} + \underbrace{\lambda(w_{n-1})}_{V_{KN}(w_n)} P_{KN}(w_n)$$

last missing puzzle piece

- Normalizing factor λ
 - Required to account for the probability mass we have discounted

$$\lambda(w_{n-1}) = \underbrace{\frac{d}{Count(w_{n-1})}}_{\text{normalized}} \cdot \underbrace{|\{w': Count(w_{n-1}w') > 0\}|}_{\text{# words that can follow}}$$

= # times the normalized discount has been applied

Outline

• Language Models

- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges

• Smoothing

- Laplace Smoothing
- Backoff & Interpolation
- Kneser-Ney Smoothing

• Evaluating Language Models

Evaluating Language Models

- A Language Model (LM) is considered good if
 - It assigns high probabilities to frequently occurring sentences
 - It assigns low probabilities to rarely occurring sentences
- 2 basic approaches to compare LMs

Extrinsic Evaluation

- Requires a downstream task (e.g., spell checker, speech recognition)
- Run downstream task with each LM and compare the results
- Can be very expensive & time-consuming

Intrinsic Evaluation

- Evaluate each LM on a test corpus
- Generally cheaper & faster
- Require intrinsic metric to compare LMs

→ **Perplexity** (among other metrics)

Intrinsic Evaluation

• 3 core steps for an intrinsic evaluation

• Common corpus breakdown: 80/10/10 (\$0% training, 10% development, 10% test)

Perplexity — Intuition

How easy is it to predict the next word?

I always order pizza with cheese and ... The 33rd President of the US was ... I saw a ...

mushrooms 0.1
pepperoni 0.1
anchovies 0.01
fried rice 0.0001
and 1e-100

• Unigrams are terrible at this game. Why?

Perplexity

- Perplexity Definition
 - The best language model is the one that best predicts an unseen test set: highest P (sentence)
 - Inverse probability of test corpus W
 - Normalized by the number of words N in test corpus

Minimizing perplexity 🤣 Maximizing probability

Perplexity — Intuition

• When is the perplexity **high s**?

Many n-grams are <u>frequent</u> in the training corpus but <u>rare</u> in the test corpus

Very few high $P(w_n|w_{n-1})$ values over test corpus

2. Many n-grams are <u>rare</u> in the training corpus but <u>frequent</u> in the test corpus

 $\overline{\Box}$

Perplexity — Practical Consideration

- In general
 - Each $P(w_n|w_{1:n-1})$ rather small $\rightarrow \prod_{n=1}^{N} P(w_n|w_{1:n-1})$ very small Risk of arithmetic underflow
- Again, logarithm to the rescue

 $PP(W) = e^{\ln PP(W)}$

Perplexity — Toy Example

- Evaluation setup
 - Bigram LM trained over 25k movie reviews
 - Small test corpus W with N = 12

 $W = \begin{bmatrix} & & \\ & "\langle s \rangle \ i \ like \ good \ movies \ \langle /s \rangle", \\ & "\langle s \rangle \ the \ story \ is \ funny \ \langle /s \rangle" \end{bmatrix}$

bigram	P(bigram)
" <s> i"</s>	0.0882
"i like"	0.0079
"like good"	0.0013
"good movies"	0.0062
"movies "	0.0034
" <s> the"</s>	0.0990
"the story"	0.0156
"story is"	0.1138
"is funny"	0.0022
"funny "	0.0081

Perplexity — Real-World Example

- Evaluation setup
 - Unigram, Bigram, Trigram LMs trained over *Wall Street Journal* articles
 - Training corpus: ~38 million words (~20k unique words)
 - Test corpus: ~1.5 million words

	Unigram	Bigram	Trigram
Perplexity	962	170	109
		A	

In-Lecture Activity

What are the (**minimum**, **maximum**) possible values for perplexity?

v = size of vocabulary

Summary

- Language Models assigning probabilities to sentences
 - Very important concept for many NLP tasks

 Different methods to compute sentence probabilities (here: n-grams; later we come back to them using neural networks)

• n-gram Language Models

Intuitive training → Maximum Likelihood Estimations

 Main consideration: zero probabilities due to large n-grams and/or open vocabularies

Markov Assumption to limited size of considered n-grams

Focus here: **Smoothing** (maybe with backoff & interpolation)

In practice, typically a combination of these and similar approaches

Outlook for Next Week: Text Classification

Image from Daniel West @ YouTube

Pre-Lecture Activity for Next Week

• Assigned Task (due before Feb 9)

Post a 1–2 sentence answer to the following question in the Pre-Lecture forum. (you will find the thread on Canvas > Discussions > [Pre-Lecture])

"When we want to evaluate classifiers, why is **accuracy** alone often not a good metric?"

Side notes:

- This task is meant as a warm-up to provide some context for the next lecture
- No worries if you get lost; we will talk about this in the next lecture
- You can just copy-&-paste others' answers but this won't help you learn better