CS4248: Natural Language Processing

Lecture 3 - n -Gram Language Models

What do you want to learn?

- "Understanding LLMs such ChatGRT"
- Provocative statement: Nobody really understands LLMs, i.e., why/how they work!
- The way to understand LLMs requires a lot of background which we will cover
- We end with an introduction into LLMs, but they are not and can not be the focus of CS4248 (a dedicated graduate course covering LLMs is currently in the planning/preparation stage - stay tuned!)
- In practice, fine-tuning LLMs is much more about proper data preparation than the actual training

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

What do you want to learn?

- HuggingFace, Langchain, Tensorflow, PyTorch, scikit-learn, numpy, etc.
- The lecture content focusing on the fundamentalconcept, not specific tools and libraries
- We provide many practical examples in our series supplementary notebooks

■ You are free and encouraged to explore any available tools/frameworks/libraries for your project

Your Concerns - Our Comments

- "I'm a total NLP/ML noob"
- CS4248 is a introduction / foundation course - we basically start from scratch
- While some background knowledge is certainly useful, it's not a requirement
- We only focus on nitty-gritty details required for this course (e.g., we do not cover backpropagation)
- "I'm worried that there will be lots of math."
- Yes, there will be math, but nothing beyond fundamental concepts of algebra, probability, calculus

■ What need we need in this course, you will need in any computer/data science field!
■ We hope we cover the math bits in sufficient detail and clarity (if not, you can always ask!)

Your Concerns - Our Comments

- "I've heard this course is hard!", "I'm afraid of the workload."
- Bias alert: We don't think that CS4248 is harder (or easier) than other courses
- The assessment components are very similar to other course - participation marks are basically free marks :)
- Consider assignments not just as an assessment component but as a learning experience
- "I'm worried about the project."
- With reasonable effort, it is almost impossible to "fail" the project - we don't expect SOTA results :)
- Basic suggestions: start early, continuous progress, regular team meetings (and/or with TA)
- The project provides some flexibility to cater your background and interests
- You can and should raise any inter-group conflicts incl. non-contributing members (there will be 2 rounds of peer review sessions using TEAMMATES!)

Recap of Week 02

Outline

- Language Models
- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges
- Smoothing
- Laplace Smoothing
- Backoff \& Interpolation
- Kneser-Ney Smoothing
- Evaluating Language Models

Pre-Lecture Activity from Last Week

- Assigned Task

- Post a 1-2 sentence answer to the following question into the L1 Discussion (you will find the thread on Canvas > Discussions)

"What do we mean when we talk about the probability of a sentence?"

Side notes:

- This task is meant as a warm-up to provide some context for the next lecture
- No worries if you get lost; we will talk about this in the next lecture
- You can just copy-\&-paste others' answers, but his won't help you learn better

The likelihood that a particular sequence of words forms a grammatically correct and meaningful statement within a given language.

Perhaps the probability that the sentence has a certain meaning?

It means that the probability that the sentence is a valid or natural expression in a given language.

$\mathrm{P}($ sentence $)=1$ / \# all possible sentences

It refers to a sequence of words, and the probability that a word appears given the previous word in a sentence. Subsequently, all these successive probabilities can be calculated using chain rule to calculate the join probability of all word sequences to find the final sentence

probability of all word sequences to find the final sentence

The probability of a sentence is the probability that this sequence of words will appear given a random collection of words. For instance, the probability of the sentence "I am hungry" is $\mathrm{P}\left(\mathrm{I}^{\prime} \mathrm{I}^{\prime}\right) ~$ P('am' | $\mathrm{I}^{\prime} \mathrm{I}^{\prime}$) $\mathrm{P}($ 'hungry' | I am').

Language Models — Motivation

- Which sentence makes more sense? S_{1} or S_{2} ?
S_{1} : "on guys all I of noticed sidewalk three a sudden standing the"
Example 1:

Example 2:

$$
S_{2}: \text { "all of a sudden I noticed three guys standing on the sidewalk" }
$$

S_{1} : "the role was played by an aeressacross famous for her comedic timing"

- But why?
- Probability of S_{2} higher than of $S_{1}: P\left(S_{2}\right)>P\left(S_{1}\right)$
\rightarrow Language Models - Assigning probabilities to a sentence, phrase (or word)

Language Models — Basic Idea

- 2 basic notions of probabilities
(1) Probability of a sequence of words

$$
\begin{aligned}
P(W) & =P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \quad \text { Soint } \\
\text { Example: } & P(\text { "remember to submit your assignment") }
\end{aligned}
$$W

(2) Probability of an upcoming word w_{n}

$$
P\left(w_{n} \mid w_{1}, w_{2}, w_{3}, \ldots, w_{n-1}\right)
$$

Example: $\quad P$ ("assignment"|"remember to submit your")

In this lecture: How to calculate these probabilities?

Language Models - Applications

- Language Models are fundamental for many NLP tasks

■ Speech Recognition P ("we built this city on rock and roll") $>P$ ("we built this city on sausage rolls")

- Spelling correction $\quad P($ "... has no mistakes" $)>P($ "... has no mistaek"
- Grammar correction $P($ "... has impron ed" $)>P($ "... has improve" $)$
- Machine Translation $\quad P($ "I went home" $)>P($ "I went to home" $)$

Outline

- Language Models
- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges
- Smoothing
- Laplace Smoothing
- Backoff \& Interpolation
- Kneser-Ney Smoothing
- Evaluating Language Models

Probabilities of Sentences (nome generally senemence f words)

P ("remember to submit your assignment") $P(" a s s i g n m e n t " \mid " r e m e m b e r ~ t o ~ s u b m i t ~ y o u r ") ~\} ~$
 \rightarrow How to calculate those probabilities?

- Quick review: Chain Rule (allows the iterative calculation of of int probabilities)

- Chain rule for 2 random events:

- Chain rule for 3 random events:

$$
\begin{aligned}
P\left(A_{1}, A_{2}, A_{3}\right) & =P\left(A_{3} \mid A_{1}, A_{2}\right) \cdot P\left(A_{1}, A_{2}\right) \\
& =P\left(A_{3} \mid A_{1}, A_{2}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot P\left(A_{1}\right)
\end{aligned}
$$

Probabilities of Sentences

- Chain rule - generalization to N random events

$$
\begin{aligned}
P\left(A_{1}, \ldots, A_{N}\right) & =\overbrace{P\left(A_{1}\right) \cdot}^{N} P\left(A_{2} \mid A_{1}\right) \cdot P\left(A_{3} \mid A_{1: 2}\right) \cdots \cdot P\left(A_{N} \mid A_{1: N-1}\right) \\
& =\prod_{i=1} P\left(A_{i} \mid A_{1: i-1}\right)
\end{aligned}
$$

\rightarrow Chain rule applied to sequences of words

$$
\begin{aligned}
P\left(w_{1}, \ldots, w_{N}\right) & =P\left(w_{1}\right) \cdot P\left(w_{2} \mid w_{1}\right) \cdot P\left(w_{3} \mid w_{1: 2}\right) \cdot \ldots \cdot P\left(w_{N} \mid w_{1: N-1}\right) \\
& =\prod_{i=1}^{N} P\left(w_{i} \mid w_{1: i-1}\right)
\end{aligned}
$$

Given two random variables X and Y with known probabilities $P(X)$ and $P(Y)$, compose as many statements with the tokens:

$$
P(X) P(Y) P(Y \mid X) P(X \mid Y)><=
$$

And classify them as always correct, sometimes correct or never correct.

> Post your answer to Canvas > Discussions > [In-Lecture Interaction] L1
(One student of your group can post the reply, and make sure to include your group members' names)

Probabilities of Sentences

- Calculating the probabilities using Maximum Likelihood Estimations

Probabilities of Sentences - Example

(1) Application of Chain Rule

```
P("remember to submit your assignment") = P("remember").
```



```
P("submit" | "remember to").
P("your" | "remember to submit").
P("assignment" | "remember to submit your")
```

(2) Maximum Likelihood Estimation

Foreshadowing:
Do you see any problems?

BP("assignment" |"remember to submit your") $=\frac{\text { Count ("remember to submit your assignment") }}{\text { Count("remember to submit your") }}$

Probabilities of Sentences - Problems

$P\left(\right.$ "assignment" |"remember to submit your") $=\frac{\text { Count ("remember to submit your assignment") }}{\text { Count("remember to submit your") }}$

- Problem: (very) long sequences
- Large number of entries in table with joint probabilities
- A sequence (or subsequence) $w_{i: j}$ may not be present in corpus
$\left.\rightarrow \operatorname{Count}^{\operatorname{Cou}} w_{i: j}\right)=0 \rightarrow \prod_{n=1}^{N} P\left(w_{n} \mid w_{1: n-1}\right)=0$
(we can ignore $\frac{0}{0}$ here; this can be handled in the implementation)
\rightarrow Can we keep the sequences short?

Outline

- Language Models
- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges
- Smoothing
- Laplace Smoothing
- Backoff \& Interpolation
- Kneser-Ney Smoothing
- Evaluating Language Models

AMERICAN Scientist

"The first application of [A. A. Markov's chains] was to a textual analysis of Alexander Pushkin's poem Eugene Onegin. Here a snippet of one verse appears (in Russian and English) along with Pushkin's own sketch of his protagonist Onegin."

Markov Assumption

- Probabilities depend on only on the last k words
- For our example:

$$
\begin{aligned}
& P(\text { "assignment" |"remember to submit your") } \approx P(\text { "assignment"|"your") } \\
& P(" a s s i g n m e n t " \mid " s u b m i t ~ y o u r ") \\
& P(\text { "assignment" | "to submit your") }
\end{aligned}
$$

n-Gram Models (consider the only n-1 last words)

n-Gram Models (consider the only n-1 last words)

Unigram (1-gram): $\quad P\left(w_{n} \mid w_{1: n-1}\right) \approx P\left(w_{n}\right)$

Bigram (2-gram): $\quad P\left(w_{n} \mid w_{1: n-1}\right) \approx P\left(w_{n} \mid w_{n-1}\right)$

Trigram (3-gram): $\quad P\left(w_{n} \mid w_{1: n-1}\right) \approx P\left(w_{n} \mid w_{n-2}, w_{n-1}\right)$

n-Gram Models

Maximum Likelihood Estimation

Unigram (1-gram): $\quad P\left(w_{n} \mid w_{1: n-1}\right) \approx P\left(w_{n}\right)$
~
Bigram (2-gram):

Trigram (3-gram): $\quad P\left(w_{n} \mid w_{1: n-1}\right) \approx P\left(w_{n}\left(w_{n-2}, w_{n-1}\right)\right.$

$$
\left.P\left(w_{n} \mid w_{1: n-1}\right) \approx P\left(w_{n} \mid w_{n-1}\right)\right)
$$

General MLE for n-grams: $P\left(w_{i} \mid w_{n-N+1: n-1}\right)=\frac{\operatorname{Count}\left(w_{n-N+1: i}\right)}{\operatorname{Count}\left(w_{n-N+1: n-1}\right)}$

- n-Gram models in practice
- 3-gram, 4-gram, 5-gram models very common
- The larger the n-grams, the more data required

To Think About:

How much more data?

n-Gram Models — Bigram Example

Example corpus with 3 sentences
<s> I am Sam </s>
<s> Sam I am </s>

$$
P(" I " \mid "<s>")=\frac{\operatorname{Count}("<s>I ")}{\operatorname{Count}("<s>")}=
$$

<s> I do not like green eggs and ham </s>

$$
\begin{gathered}
P(" a m " \mid " I ")=\frac{\operatorname{Count}(" I a m ")}{\operatorname{Count}(" I ")}= \\
P\left({ }^{(" S a m " \mid " a m ")}=\frac{\operatorname{Count}(" a m \text { Sam") }}{\operatorname{Count}(" a m ")}=\right. \\
P("</ s>" \mid " S a m ")=\frac{\operatorname{Count}(" S a m</ s>")}{\operatorname{Count}(" S a m ")}=
\end{gathered}
$$

n-Gram Models — Bigram Example

Example corpus with 3 sentences

$$
P(" I " \mid "<s>")=\frac{\operatorname{Count}("<s>I ")}{\operatorname{Count}("<s>")}=\frac{2}{3}
$$

$$
\begin{aligned}
& \rightarrow P(" a m " \mid " I ")=\frac{\operatorname{Count}(" I \text { am") }}{\operatorname{Count}(" I ")}=\frac{2}{3} \\
& P(\text { "Sam" } \mid " a m ")=\frac{\operatorname{Count}(" a m \text { Sam") }}{\operatorname{Count}(" a m ")}=\frac{1}{2}
\end{aligned}
$$

$$
P("</ s>" \mid " S a m ")=\frac{\operatorname{Count}(" S a m</ s>")}{\operatorname{Count}(" S a m ")}=\frac{1}{2}
$$

n -Gram Models — Bigram Example 25,000 Movie feriems)

$$
P("<s>\text { i like the story }</ s>")=? ? ?
$$

Unigram counts:			
i	like	the	story
87,185	19,862	33,0867	11,094

Bigram counts:

	i	like	the	story
\mathbf{i}	1	693	20	0
like	326	3	1,997	8
the	15	42	148	5171
story	23	16	16	0

n-Gram Models — Bigram Example ${ }_{(25,000 \text { Movie Reviews) }}$

$$
P("<s>i \text { ike the story }</ s>")=? ? ?
$$

Unigram counts:

\mathbf{y}	like	the	story
$\mathbf{8 7 , 1 8 5}$	19,862	33,0867	11,094

Bigram counts:
in

	i	like	the	story
i	0	693	20	0
like	326	0	1,997	8
the	15	42	0	5,171
story	23	16	16	0

Bigram probabilities:

	i	like	the	story
\mathbf{i}	0.0	0.007949	0.000229	0.0
like	0.016413	0	0.100544	0.000403
the	0.000045	0.000127	0.0	0.015629
story	0.002073	0.001442	0.001442	0.0

Example calculation:
$P(" l i k e " \mid " i ")=\frac{\operatorname{Count}(" i \operatorname{like} ")}{\operatorname{Count}(" i ")}=\frac{693}{87185}=0.007949$

n-Gram Models - Bigram Example ${ }_{(25,000 \text { Movie Reviews) }}$

Bigram probabilities:

Not in the table:

$$
\begin{aligned}
P(" i " \mid "<s>") & =0.088198 \\
P("</ s>" \mid " \text { story" }) & =0.001262
\end{aligned}
$$

$$
P("<s>i \text { like the story }</ s>")=0.088198 .
$$

 need P (" $<s>")$?

n-Gram Models — Practical Consideration

- In general
- Each $P\left(w_{n} \mid w_{1: n-1}\right)$ rather small $\rightarrow \prod_{n=1}^{N} P\left(w_{n} \mid w_{1: n-1}\right)$ very small
- Risk of arithmetic underflow
\rightarrow Always use an equivalent logarithmic format
- Logarithm is a strictly monotonic function

点点 点 Quick Quiz（2 mins）

A

$$
\mathrm{P}\left(S_{1}\right)>\mathrm{P}\left(S_{2}\right)
$$

Given a unigram language model and the following two sentences S_{1} and S_{2}
S_{1} ：＂alice saw the accident＂
S_{2} ：＂the accident alice saw
which sentence has the higher probability？

- Task: Calculate the Probability P("saw"|"alice") given the table of bigram counts below
- Post your answer to Canvas > Discussions > [In-Lecture] L1 ... (Feb 2)
(One student of your group can post the reply. Make sure to include your group members' names)

alice accident	5
saw alice	5
alice the	15
alice saw	20
saw the	25
accident saw	1
aecident alice	2

Outline

- Language Models
- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges
- Smoothing
- Laplace Smoothing
- Backoff \& Interpolation
- Kneser-Ney Smoothing
- Evaluating Language Models

Handling OOV Words — Closed vs. Open Vocabulary

- Closed vocabulary
- All strings contain words from a fixed vocabulary
\rightarrow Ne unknown words

- Open Vocabulary
- Strings may contain words that are not in the vocabulary (00 ov words)
- Examples: proper nouns, mismatching context
\rightarrow Counts might be 0 (eyen for individual words and not just for long(er) sequences of words)

2 Movie review dataset - Unigram counts:

\mathbf{i}	like	the	story	costner	einstein	planck	biden	integral	adverb	tensor	nlp
87,185	19,862	33,0867	11,094	67	20	$\mathbf{0}$	$\mathbf{0}$	27	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

Handling OOV Words — Alternatives

- Special token for OOV words
- During normalization, replace all OOV yords with a special token (e.g., <UNK>)
- Estimate counts and probabilities for sequences involving <UNK> line for regular word
- Subword tokenization (e.g., with Byte-Pair Encoding (BPE) - Week 02)
- Split texts into tokens smaller than words

■ Tokens are more likely to be frequent

Smoothing

Cl- Quite inter
4oris, 2 ant e
A contronym is a shole word with two defintons that are contradictoy. For instenct, dust can mean to cover wet dast, but dso to remove dist and seed cm mean to plant secds, sua abo wo remove seeds.

YOUKEEP USING THAT WOBD

IDO NOTTHINXITMEANS WHAT YOU THINKIT MEANS

Outline

- Language Models
- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges
- Smoothing
- Laplace Smoothing
- Backoff \& Interpolation
- Kneser-Ney Smoothing
- Evaluating Language Models

Smoothing

- Basic idea
- Avoid assigning probabilitie of 0 to unseen n-grams
- "Move" some probability mass from more frequent n -grams to unseen n -grams
- Also called: discounting

- Basic method: Laplace Smoothing alaso: Add-1 Smoothing)
hallucinate
- Example for bigrams

	i	like	the	story
\mathbf{i}	0	693	20	0
like	326	0	1,997	8
the	15	42	0	5,171
story	23	16	16	0

	i	like	the	story
\mathbf{i}	1	694	21	1
like	327	1	1,998	9
the	16	43	1	5,172
story	24	17	17	1

Smoothing — Laplace Smoothing

- Calculating the probabilities

$$
\begin{aligned}
& P_{\text {Laplace }}\left(w_{n} \mid w_{1: n-1}\right)=\frac{\operatorname{Count}_{\text {Laplace }}\left(w_{1: n-1} w_{n}\right)}{\sum_{w} \operatorname{Count}}{ }_{\text {Laplace }}\left(w_{1: n-1} w\right) \\
& \frac{\operatorname{Count}\left(w_{1: n-1} w_{n}\right)+1}{\sum_{w}\left[\operatorname{Count}\left(w_{1: n-1} w\right)+1\right]} \\
&=\operatorname{Count}\left(w_{1: n-1} w_{n}\right)+1 \\
& \operatorname{Count}\left(w_{1: n-1}\right)+V
\end{aligned}
$$

e.g., for bigrams: $\quad P_{\text {Laplace }}\left(w_{n} \mid w_{n-1}\right)=\frac{\operatorname{Count}\left(w_{n-1} w_{n}\right)+1}{\operatorname{Count}\left(w_{n-1}\right)+V}$

Smoothing — Laplace Smoothing

- Effects of smoothing on probabilities

Bigram probabilities (without Laplace Smoothing):

	\mathbf{i}	like	the	story
\mathbf{i}	0.0	0.007949	0.000229	0.0
like	0.016413	0	0.100544	0.000403
the	0.000045	0.000127	0.0	0.015629
story	0.002073	0.001442	0.001442	0.0

Bigram probabilities (with Laplace Smoothing):

	\mathbf{i}	like	the	story
\mathbf{i}	0.000006	0.004075	0.000123	0.000006
like	0.003175	0.000010	0.019401	0.000087
the	0.000039	0.000104	0.000002	0.012493
story	0.000255	0.000180	0.000180	0.000011

- Observations

- No zero probabilities (duh!)
- Some non-zero probabilities have changed quite a bit!
\rightarrow For some n-grams: (arguably) too much probability gets moved to zero probabilities

Smoothing — Laplace Smoothing

- Effects of smoothing on counts

■ Question: What counts - without smoothing - would yield $P_{\text {Laplace }}\left(w_{i} \mid w_{i-1}\right)$?

$$
\begin{aligned}
& P_{\text {Laplace }}\left(w_{n} \mid w_{n-1}\right)=\frac{\operatorname{Count}\left(w_{n-1} w_{n}\right)+1}{\operatorname{Count}\left(w_{n-1}\right)+V}=\frac{\operatorname{Count}}{}{ }^{*}\left(w_{n-1} w_{n}\right) \\
& \operatorname{Count}\left(w_{n-1}\right) \\
& \rightarrow \operatorname{Count}^{*}\left(w_{n-1} w_{n}\right)=\left(\operatorname{Count}\left(w_{n-1} w_{n}\right)+1\right) \cdot \frac{\operatorname{Count}\left(w_{n-1}\right)}{\operatorname{Count}\left(w_{n-1}\right)+V}
\end{aligned}
$$

Bigram counts (original):

	\mathbf{i}	like	the	story
\mathbf{i}	0	693	20	0
like	326	0	1,997	8
the	15	42	0	5,171
story	23	16	16	0

Bigram counts (adjusted):

	\mathbf{i}	like	the	story
\mathbf{i}	0.51	355.28	10.75	0.51
like	63.07	0.19	385.34	1.74
the	12.79	34.37	0.80	4133.5
story	2.83	2.00	2.00	0.12

Smoothing — Laplace Smoothing

- Laplace Discount

- d_{c} - ratio of adjusted counts to the original counts
- Only defined where original counts > 1

$$
d_{c}=\frac{\operatorname{Count}^{*}\left(w_{n-1} w_{n}\right)}{\operatorname{Count}\left(w_{n-1} w_{n}\right)}
$$

Laplace discounts:

	\mathbf{i}	like	the	story
$\mathbf{~}$		0.51	0.54	
Iike	0.19		0.19	0.22
the	0.85	0.82		0.80
story	0.12	0.13	0.13	

Add-k Smoothing

- Generalize Laplace (Add-1) Smoothing
- Add k instead of 1
- Set $0<k \leq 1$

$$
P_{a d d-k}\left(w_{n} \mid w_{n-1}\right)=\frac{\operatorname{Count}\left(w_{n-1} w_{n}\right)+k}{\operatorname{Count}\left(w_{n-1}\right)+k V}
$$

Outline

- Language Models
- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges
- Smoothing
- Laplace Smoothing
- Backoff \& Interpolation
- Kneser-Ney Smoothing
- Evaluating Language Models

Backoff \& Interpolation

- Intuition: Utilize less context if required
- Assume we want to calculate $P\left(w_{n} \mid w_{n-2}, w_{n-1}\right)$ but trigram $w_{n-2} w_{n-1} w_{n}$ is not in the dataset
(1) Backoff
- Make use if bigram probability $P\left(w_{n} \mid w_{n-1}\right)$
- If still insufficient, use unigram probability $P\left(w_{n}\right)$
(2) Interpolation
- Estima(e $P\left(w_{n} \mid w_{n-2}, w_{n-1}\right)$ as a weighted mix of trigram, bigram, and-unigram probabilities
- Learn weights λ_{i} from data
- In practice, better than Backoff

Linear Interpolation (example for trigrams)

- Simple interpolation

$$
\underbrace{\left.\left(w_{n}\right) w_{n-2}, w_{n-1}\right)}_{\infty}=\begin{aligned}
& \lambda_{1} P\left(w_{n}\right)+ \\
& \lambda_{2} \overline{\left.P\left(\sigma_{n}\right) w_{n-1}\right)+} \\
& \lambda_{3} P \frac{\left(w_{n} \mid w_{n-2}, w_{n-1}\right)}{c}, ~ Y
\end{aligned}
$$

- λ_{i} conditioned on context

$$
\begin{aligned}
& \hat{P}\left(w_{n} \mid w_{n-2}, w_{n-1}\right)=\begin{array}{l}
\frac{\lambda_{1}\left(w_{n-2}, w_{n-1}\right)}{\lambda_{2}\left(w_{n-2}, w_{n-1}\right) P\left(w_{n}\right)+} \\
\lambda_{3}\left(w_{n-2}, w_{n-1}\right) P\left(w_{n-1}\right)+ \\
\left.w_{n-2}, w_{n-1}\right)
\end{array} \\
& \uparrow
\end{aligned}
$$

Backoff \& Interpolation

- Learn weights λ_{i} from data - basic idea
(1) Collect held-out corpus
- Additional corpus or
- Split from initial corpus
(2) Calculate all n-gram probabilities
- Calculation must not consider any held-out corpus!
(3) Find λ_{i} that maximizes $\hat{P}\left(w_{n} \mid w_{n-2}, w_{n-1}\right)$ over held-out corpus
- e.g., using Expectation-Maximization (EM) algorithm (not further discussed here)

Outline

- Language Models
- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges
- Smoothing
- Laplace Smoothing
- Backoff \& Interpolation

■ Kneser-Ney Smoothing

- Evaluating Language Models

Kneser-Ney Smoothing

- Idea of Kneser-Ney Smoothing: Absolute Discounting Interpolation

Note: We only look at a bigram language model in the following to keep the examples and notations easy. Kneser-ivey Smoothing is analogously defined for larger n-grams.

Kneser-Ney Smoothing — Absolute Discounting

- Absolute discounting
- Remove fixed value d from bigram counts (typically: $0<d<1$)
- Makes probability mass for unigrams available
- Intuition

If Count $\left(w_{n-1} w_{n}\right)$ is large, count is hardly affected
If $\operatorname{Count}\left(w_{n-1} w_{n}\right)$ is small, count is not that useful to begin with

\rightarrow Question: How to pick the value(s) for d ?

Kneser-Ney Smoothing — Absolute Discounting

- Approach by Church and Gale (1991)
- Compute bigram counts over large training corpus
- Compute the counts of the same bigrams over a large test corpus
- Compute the average count from the test corpus with respect to the count in the training corpus

On average, a bigram that occurred 5 times in the training corpus occurred 4.21 times in the test corpus

Bigram count in training corpus	Bigram count in test corpus
0	0.000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

\rightarrow Set $d=0.75$ (maybe a bit smaller for counts of 1 and 2)
Source: A comparison of the enhanced Good-Turing and deleted estimation methods for estimating probabilities of English bigrams
(Church and Gale, 1991)

Kneser-Ney Smoothing — Interpolation with a Twist

- Motivation

$$
P_{K N}\left(w_{n} \mid w_{n-1}\right)=\frac{\max \left[\operatorname{Count}\left(w_{n-1} w_{n}\right)-d, 0\right]}{\operatorname{Count}\left(w_{n-1}\right)}+\lambda\left(w_{n-1}\right) P\left(w_{n}\right)
$$

Using basic interpolation, that would just be the unigram probability
\rightarrow But is this actually a good idea?

Predict the missing word:
"I can't see without my reading

If "Hong Kong" is very frequent:

$$
P(\text { "Kong" })>P(\text { "glasses" })
$$

Kneser-Ney Smoothing — Interpolation with a Twist

- The difference between "glasses" and "Kong" - Intuition
- "glasses" is preceded by many other words

■ "Kong" almost only preceded by "Hong"
$\rightarrow P(w)=$ "How likely is $w ?$ "... Maybe not most intuitive approach

- Alternative: $P_{K N}(w)=$ "How likely is wto appear as a novel continuation?"
- $P_{K N}(w)$ is high \Leftrightarrow there are many words w^{\prime} that form an existing bigram $w^{\prime} w$
- $P_{K N}(w)$ is low \Leftrightarrow there are only few words w^{\prime} that form an existing bigram $w^{\prime} u$
\rightarrow How can we quantify this?

Kneser-Ney Smoothing — Interpolation with a Twist

- Calculating $P_{K N}(w)$
\# words u^{\prime} 'that form an existing bigram $w^{\prime} w$

- Task: find 5+ words where you would expect that $P_{K N}(w)>P(w)$

■ Post your answer to Canvas > Discussions > [In-Lecture] L1 ... (2 Feb) (one student of your group can post the reply, but include your group members' names)

■ We already used "Kong" as an example, so try to avoid "Francisco", "Angeles", "Aires", etc. :)

- Optional: Think about how the context matters (e.g., travel blogs vs. movie reviews)

Pro Tip: It's not a competition, but about discussions and sharing ideas

Kneser-Ney Smoothing — Wrapping it Up

$$
P_{K N}\left(w_{n} \mid w_{n-1}\right)=\frac{\max \left[\operatorname{Count}\left(w_{n-1} w_{n}\right)-d, 0\right]}{\operatorname{Count}\left(w_{n-1}\right)}+\underbrace{\lambda\left(w_{n-1}\right)}_{\text {last missing puzzle piece }} P_{K N}\left(w_{n}\right)
$$

- Normalizing factor λ
- Required to account for the probability mass we have discounted

$$
\begin{aligned}
& \lambda\left(w_{n-1}\right)=\underbrace{\frac{d}{\operatorname{Count}\left(w_{n-1}\right)}}_{\begin{array}{c}
\text { normalized } \\
\text { discount }
\end{array}} \cdot \underbrace{\left\{w^{\prime}: \operatorname{Count}\left(w_{n-1} w^{\prime}\right)>0\right\} \mid}_{\text {\# words that can follow }} \\
&=\text { \# words that have been discounted } \\
&=\# \text { times the normalized discount has been applied }
\end{aligned}
$$

Outline

- Language Models
- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges
- Smoothing
- Laplace Smoothing
- Backoff \& Interpolation
- Kneser-Ney Smoothing
- Evaluating Language Models

Evaluating Language Models

- A Language Model (LM) is considered good if
- It assigns high probabilities to frequently occurring sentences
- It assigns low probabilities to rarely occurring sentences
- 2 basic approaches to compare LMs

Extrinsic Evaluation

- Requires a downstream task
(e.g., spell checker, speech recognition)
- Run downstream task with each LM and compare the results
- Can be very expensive \& time-consuming

Intrinsic Evaluation

- Evaluate each LM on a test corpus
- Generally cheaper \& faster
- Require intrinsic metric to compare LMs

[^0]
Intrinsic Evaluation

- 3 core steps for an intrinsic evaluation
(1) Train LM on a training corpus
(ie, compute the n-gram probabilities)
(2) Tume parameters of LM using a development corpus
(e.g., k in case of Add- k Smoothing)
(3) Compute evaluation metric on test corpus (e.g., perplexity)
- Common corpus breakdown: 80/10/10 (\$0\% training, 10% development, 10% test)

Perplexity — Intuition

- How easy is it to predict the next word?

- Unigrams are terrible at this game. Why?

Perplexity

- Perplexity — Definition
- The best language model is the one that best predicts an unseen test set: highest P (sentence)
- Inverse probability of test corpus W

$$
P P(W)=P\left(w_{1}, w_{2}, \ldots, w_{N}\right)+\frac{1}{N}
$$

- Normalized by the number of words N
in test corpus
chain rule: $=\sqrt[N]{\prod_{n=1}^{N} \frac{1}{P\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right)}}$
e.g., for bigrams:

Perplexity — Intuition

- When is the perplexity high ※?

Many n-grams are frequent in the training corpus but rare in the test corpus

2
Many n -grams are rare in the training corpus but frequent in the test corpus

Very few high $P\left(w_{n} \mid w_{n-1}\right)$ values over test corpus

Perplexity — Practical Consideration

- In general
- Each $P\left(w_{n} \mid w_{1: n-1}\right)$ rather small $\rightarrow \prod^{N} P\left(\psi_{n} \mid w_{1: n-1}\right)$ very small
- Risk of arithmetc underflow

```
n=1
```

- Again, logarithm to the rescue

$$
P P(W)=e^{\ln P P(W)}
$$

Perplexity — Toy Example

- Evaluation setup

- Bigram LM trained over 25k movie reviews
- Small test corpus W with $N=12$

Perplexity — Real-World Example

- Evaluation setup
- Unigram, Bigram, Trigram LMs trained over Wall Street Journal articles
- Training corpus: ~ 38 millioṇ words (~20k unique words)
- Test corpus: ~ 1.5 million words

	Unigram	Bigram	Trigram
Perplexity	962	170	109
	9	A	

What are the（minimum，maximum） possible values for perplexity？

$\underbrace{(1, \mathrm{~V})}_{v=\text { size of vocabulary }}$
\square

Summary

- Language Models - assigning probabilities to sentences

■ Very important concept for many NLP tasks

- Different methods to compute sentence probabilities
(hero: n-grams; later we come back to them using neural networks)
- n-gram Language Models

Intuitive training \rightarrow Maximum Likelihood Estimations

- Main consideration: zero probabilities due to large n-grams and/or open vocabularies

In practice, typically a combination of these and similar approaches

Outlook for Next Week: Text Classification

Pre-Lecture Activity for Next Week

- Assigned Task (due before Feb 9)
- Post a 1-2 sentence answer to the following question in the Pre-Lecture forum. (you will find the thread on Canvas > Discussions > [Pre-Lecture])
"When we want to evaluate classifiers, why is accuracy alone often not a good metric?"

Side notes:

- This task is meant as a warm-up to provide some context for the next lecture
- No worries if you get lost; we will talk about this in the next lecture
- You can just copy-\&-paste others' answers but this won't help you learn better

[^0]: \rightarrow Perplexity (among other metrics)

