National University
of Singapore

NUS | Computing

Lecture 3

CS4248: Natural Language Processing

Lecture 3 — n-Gram Language Models
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What do you want to learn?

e "Understanding LLMs such ChatGPT"

Provocative statement: Nobody really understands LLMs, i.e., why/how they work!
The way to understand LLMs requires a lot of background which we will cover

We end with an introduction into LLMs, but they are not and can not be the focus of CS4248
(a dedicated graduate course covering LLMs is currently in the planning/preparation stage — stay tuned!)

In practice, fine-tuning LLMs is much more about proper data preparation than the actual training

What data scientists spend the most time doing

® Building training sets: 3%
® (leaning and organizing data: 60%
® Collecting data sets; 19%
Mining data for patterns: 9%
® Refining algorithms: 4%
® Other: 5%

Source: https://www.forbes.com/sites/qgilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/



https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/

What do you want to learn?

e HuggingFace, Langchain, Tensorflow, PyTorch, scikit-learn, numpy, eftc.
m The lecture content focusing on the fundamental concept, not specific tools and libraries

m We provide many practical examples in our series supplementary notebooks

m You are free and encouraged to explore any available tools/frameworks/libraries for your project


https://github.com/chrisvdweth/nus-cs4248x

Your Concerns — Our Comments

e "I'm a total NLP/ML noob"

m CS4248 is a introduction / foundation course — we basically start from scratch
m While some background knowledge is certainly useful, it's not a requirement

m We only focus on nitty-gritty details required for this course (e.g., we do not cover backpropagation)

e "I'm worried that there will be lots of math."
m Yes, there will be math, but nothing beyond fundamental concepts of algebra, probability, calculus

m What need we need in this course, you will need in any computer/data science field!

m We hope we cover the math bits in sufficient detail and clarity (if not, you can always ask!)



Your Concerns — Our Comments

e "l've heard this course is hard!" "I'm afraid of the workload."
m Bias alert: We don't think that CS4248 is harder (or easier) than other courses

m The assessment components are very similar to other course - participation marks are basically free marks :)

m Consider assignments not just as an assessment component but as a learning experience

e "I'm worried about the project.”
m With reasonable effort, it is almost impossible to "fail" the project - we don't expect SOTA resuits :)

m Basic suggestions: start early, continuous progress, regular team meetings (and/or with TA)
m The project provides some flexibility to cater your background and interests

m You can and should raise any inter-group conflicts incl. non-contributing members
(there will be 2 rounds of peer review sessions using TEAMMATES!)



Recap of Week 02

e Equivalence

m Regular Expressions describe Regular Languages
(most restricted types of languages with respect to the Chomsky Hierarchy)

m Regular Language = language accepted by a FSA

Example: FSA that accepts the Regular Language
described by the Regular Expression I(o+)+

Relationship to Finite State Automata

Regular Expression
1(o+)+

<>

{lol, loool, lolol, looolol, ...}

Chomsky Hierarchy
(Source: Wikipedia)

recursively enumerable

context-sensitive
context-free

regular

Regular Language
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corpus representation vocabulary
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low _ merges
widest _

lower

2N W o

longer

corpus representation vocabulary

6 |newest _

5 |[low_ merges
3 widest _ (e,s)
2 [lower

1 longer _

Tokenization — BPE Token Learner

d,e,g,1i,1,n,0,1,5,t,w,

@ most frequent pair: e & s (9 occurrences)

d,e,g,i,1,n0,1,5t,w_,es

@ most frequent pair: es & t (9 occurrences)

38

Noisy Channel Model — Calculating/Estimating P(z|w)

inslw; 1,7
count|w;] 2
dellw;_1,w;]

count [wifl,’uli} ’

)

-]

P(zlw) =
sublz; w]
count|w;]
trans(w;i,w;1]
count|w;,w; 1]
w; = i-th character in the correct word w
I; =i-th character in the misspelled word =

if insertion
if deletion
if substitution

if transposition

95
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Pre-Lecture Activity from Last Week

Pre-Lecture Activity from Last Week

e Assigned Task

m Post a 1-2 sentence answer to the following question into the L1 Discussion
(you will find the thread on Canvas > Discussions)

“What do we mean when we talk about
the probability of a sentence?”

Side notes:
e This task is meant as a warm-up to provide some context for the next lecture
e No worries if you get lost; we will talk about this in the next lecture
e You can just copy-&-paste others' answers, but his won't help you learn better




Pre-Lecture Activity from Last Week

The probability that a sequence of words will form a coherent sentence with
the correct context given prior knowledge.

Q How likely it is a sentence is grammatically correct.

2

Perhaps the probability that the sentence has a certain meaning?

C)

It means that the probability that the sentence is a valid or natural
expression in a given language.

' P(sentence) = 1 / # all possible sentences

‘ It is the product of the probability of its words.

OR

The likelihood that a particular sequence of words forms a grammatically
correct and meaningful statement within a given language.

0

It means how likely a sentence/phrase is expected to appear.

For example, if one of the training examples is 'l like cats', then 'cats' has a
possibility to appear after 'l like' appears.

It refers to a sequence of words, and the probability that a word appears
given the previous word in a sentence. Subsequently, all these successive
probabilities can be calculated using chain rule to calculate the join
probability of all word sequences to find the final sentence

L

The probability of a sentence is the probability that this sequence of words
will appear given a random collection of words. For instance, the probability
of the sentence "l am hungry" is P('I') * P(am' | 'I') * P('hungry’ | 'l am’).




Language Models — Motivation

e \Which sentence makes more sense? 87 or 82?

S,: "on guys all | of noticed sidewalk three a sudden standing the"
Example 1:
S, "all of a sudden | noticed three guys standing on the sidewalk”
S, "the role was played by an aeressacross famous for her comedic timing"
Example 2:
S, "the role was played by an aeressactress famous for her comedic timing"
e But why?

m Probability of S, higher than of S: P(S5) > P(S])

=» Language Models — Assigning probabilities to a sentence, phrase (or word)

10



Language Models — Basic ldea

e 2 basic notions of probabilities

(1) Probability of a sequence of words IV
P(W) = P(wy,wa,ws, ..., wp,)

Bample:  (“remember to submit your assignment”)

(2) Probability of an upcoming word w,,
P(wn | w1, W, w3z, - - . 7wn—1)

example:  P(“assignment” | “remember to submit your”)

In this lecture: How to calculate these probabilities?

11



Language Models — Applications

e Language Models are fundamental for many NLP tasks

m Speech Recognition P(“we built this city on rock and roll”) > P(“we built this city on sausage rolls™)
m Spelling correction  P(“... has no mistakes”) > P(“... has no mistack”)
m Grammar correction P(“... has improved”) > P(*“... has improve”)

m Machine Translation P(“I went home”) > P(“I went to home”)

12
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PI‘Obabi"tiBS Of SBH’[BHGBS (more generally: sequence of words)

P(“remember to submit your assignment’)

77|c¢

remember to submit your”)

" : =» How to calculate those probabilities?
P(“assignment

e Quick review: Chain Rule (allows the iterative calculation of joint probabilities)

m Chain rule for 2 random events: P(Aq, Ag) = P(As]Ay) - P(Ay)

m Chain rule for 3 random events: P(A1, Ay, A3) = P(As|Aq, Ag) - P(Aq, Ag)
= P(A3|A1, Ag) - P(Ag|Ay) - P(Ay)

14



Probabilities of Sentences

e Chain rule — generalization to N random events

P(Ay,...,Ay) = P(Ay) - P(Ag]Ay) - P(Ag[A1.2) -+ P(AN|AL. N—1)

N

P(AZ“AL @'_1> 1:J — sequence notations

—.

1

~.
I

=» Chain rule applied to sequences of words

Plwy,...,wy) = P(wy) - Pwa|wy) - P(wz|wy. 2) - ... Plwylwy. y_1)
N

= [ Plwilwy . i-1)

1=1

15



In-Lecture Activity

A A Xk Probably Correct? (5 mins)

Given two random variables X and Y with known probabilities P(X )and P(Y),
compose as many statements with the tokens:

P(X) P(Y) P(Y|X) PX|Y) > < =

And classify them as always correct, sometimes correct or never correct.

Post your answer to Canvas > Discussions > [In-Lecture Interaction] L1

(One student of your group can post the reply, and make sure to include your group members’ names)




Probabilities of Sentences

e Calculating the probabilities using Maximum Likelihood Estimations

P(w |7J} )_ Count(wl:n—lwn> B COU?’Lt(wltn)
n|Wl:in—-1) — Zw Count(wl:n—lw) B OOunt(wlzn—l)

Quick quiz: Why does the
denominator simplify like this?

17



Probabilities of Sentences — Example

(1) Application of Chain Rule

P(“remember to submit your assignment”) =  P(“remember”) -
P

(
(“to” | “remember”) -
P(“submit” | “remember to”) -
(
(

P((

P(“assignment” | “remember to submit your™)

your” | “remember to submit”) -

(2) Maximum Likelihood Estimation

Count(“remember”)

P(“remember”) =

N %) Foreshadowing:

Count(“remember to”) Do you see any problems?

P(“to” | “remember”) =

Count(“remember”)

: , Count(“remember to submit your assignment”
P(“assignment” | “remember to submit your”) = ( J J )

Count(“remember to submit your”)



Probabilities of Sentences — Problems

Count(“remember to submit your assignment”)

P(“assignment” | “remember to submit your”) = Count(“remember to submit gour”)

e Problem: (very) long sequences
m Large number of entries in table with joint probabilities

[ | Asequence (or subsequence) W j

N
may not be present in corpus } > Count(wi;) =0 - H P(wy|wy: n1) =0

n=1

(we can ignore % here; this can be handled in the implementation)

=» Can we keep the sequences short?

19
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Scientist

“The first application of [A. A.
Markov’s chains] was to a
textual analysis of Alexander
Pushkin's poem Eugene
Onegin. Here a snippet of one
verse appears (in Russian and
English) along with Pushkin's
own sketch of his protagonist
Onegin.”

Edljel" |y|8|9H|y|T
b| Hle| |y|c|mle|B
BwAs/t gayed
nglti@dhBvEasvE
GnibilHIghitidd

21



Markov Assumption

e Probabilities depend on only on the last / words

N N
P(wy,...,wy) = HP(wn|w1;n_1) = Hp(wn|wn—k: n—1)
n=1 n=1
e For our example:
P(“assignment” | “remember to submit your”) ~ P(“assignment” | “your”)
P(“assignment” | “submit your”)
P(“assignment” | “to submit your”)

22



n-GI‘am MOdEIS (consider the only n-7last words)

Unigram (1-gram):  P(w,|w1. 1) ~ 777
Bigram (2-gram):  P(w,|w1. 1) ~ 777

Trigram (3-gram):  P(w,|wy. 1) &= 777

23



n-GI‘am MOdEIS (consider the only n-7last words)

Unigram (1-gram):  P(wy|wi. ,—1) = P(wp)
Bigram (2-gram):  P(wp|wy. p—1) = P(wp|w,_1)

Trigram (3-gram):  P(wplwy. 1) & Plwnlw 2, w, 1)

Quick quiz: How does this relate to
context-sensitive or context-free?

24



n-Gram Models

Maximum Likelihood Estimation

: Count(wy,
Unigram (1-gram):  P(wp|wy. ,—1) = P(wy) P(w,) = ﬁS—OfZQ
. Count(wy,—1wp)
Bigram (2-gram):  P(wp|wy. p—1) = P(wp|w,_1) P(wp|wy,_1) =

Count(wy_1)

. Count(w,, _ow,, 1w
Trigram (3-gram).  P(wp|wy. p—1) & P(wp|wy—2,wp—1)  Plwplwp—1, wy—2) = (Wn—9Wn—1t0n)

Count(wy,_owy,_1)

Count(wy,—N41:4)

General MLE for n-grams: P(wi|wn—N+1¢”_1):Count(w N+1:n-1)
n— n—

e n-Gram models in practice
m 3-gram, 4-gram, 5-gram models very common

%) To Think About:
m The larger the n-grams, the more data required How much more data?

25



n-Gram Models — Bigram Example

Example corpus with 3 sentences

<s> | am Sam </s> P . Count(“<s> I")
P( 1 <s5> ) — « ” -
<s> Sam | am </s> Count( <Ss> )

<s> | do not like green eggs and ham </s>

Count(“I am”)

P 44 2 “177 —
(Yam ) Count(“I”)

Count(“am Sam”)

P “Sa}m” “am” —
( ) Count(“am”)

Count(“Sam < /s>")
Count(“Sam”) B

P(((</S>77|((Sam77) —

26



n-Gram Models — Bigram Example

Example corpus with 3 sentences

<s>| am Sam </s>
<s> Sam | am </s>

<s> | do not like green eggs and ham </s>

P(ﬁ([?? £C<S>77) —

P( ((am” 7 I)?) —

P(“Sam” 77am?7) —

P(L(</S>?7|L(Sam77) —

Count(“<s> I") 2

Count(“<s>7") 3

Count(“I am”) 2
Count(“I") 3

Count(“am Sam”)
Count(“am”)

Count(“Sam < /s>")

Count(“Sam”)

1
9

27



n-Gram Models — Bigram Example (5000 movie Reviews
P(“<s> ilike the story </s>")= 777

Unigram counts:

o Jme @ femy |

87,185 19,862 33,0867 11,094

Bigram counts:

20 0
1,997 8
148 5171
16 0

28



n-Gram Models — Bigram Example (5000 movie Reviews
P(“<s> ilike the story </s>")= 777

Unigram counts:

.
o Jme @ fey |

87,185 19,862 33,0867 11,094 Bigram probabilities:

_mm

0.007949 | 0.000229
0.016413 | O 0.100544 | 0.000403

m 0.000045 | 0.000127 | 0.0 0.015629
0.002073 | 0.001442 | 0.001442 | 0.0

Bigram counts:

Example calculation:

(“l,&keﬁ ‘ (199 77) —

Count(“t like”) 693

= = 0.007949
Count(“i") 87185

29



n-Gram Models — Bigram Example (5000 movie Reviews

Bigram probabilities:

0.007949 | 0.000229
0.016413 | 0.0 0.100544
0.000045 | 0.000127 | 0.0
Syl 0.002073 | 0.001442 | 0.001442

Not in the table:

P(47|“< s>7) = 0.088198
P(“</s>"|“story”) = 0.001262

Quick quiz: Why don't we
need P(“<s>")?

-_mm

0.000403
0.015629
0.0

P(“<s> ilike the story </s>7)= P(%"[*<s>")-
P(“like”|“i") -
P(“the”|“like”) -
P(“story”|“the”) -
P(“</s>"|“story”)

P(“<s> 1ilike the story </s>")= ().088198 -

0.007949 -
0.100544 -
0.015629 -
0.001262

P(“<s> 1ilike the story </s>7)= ().00000000139

30



n-Gram Models — Practical Consideration

e |n general N

m Each P(wp|w;. ,,_1) rather small = H P(wp|wy. n—1) very small

=1
m Risk of arithmetic underflow !

=» Always use an equivalent logarithmic format
m Logarithm is a strictly monotonic function

P1P2P3PNOCIOg<P1P2P3PN)
= log P; + log P» + log P;

-...logPN

31



In-Lecture Activity

£ A A Quick Quiz (2 mins)

Given a unigram language model and
the following two sentences S, and S,

S /- “alice saw the accident”

82: “the accident alice saw”

which sentence has the
higher probability?

P(S,) > P(S,) 1

P(S,) <P(S,) }

P(S,) = P(S)) }

insufficient data }




In-Lecture Activity

£ A A In-Lecture Activity (5 mins)

e Task: Calculate the Probability P(“saw’”|“alice”)
given the table of bigram counts below

e Post your answer to Canvas > Discussions > [In-Lecture] L1 ... (Feb 2)

(One student of your group can post the reply. Make sure to include your group members’ names)

alice accident

saw alice

alice the

alice saw

saw the

accident saw

accident alice
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Handling 00V Words — Closed vs. Open Vocabulary

e Closed vocabulary
m All strings contain words from a fixed vocabulary

=» No unknown words

e Open Vocabulary
m Strings may contain words that are not in the vocabulary (oov words)

m Examples: proper nouns, mismatching context

= Counts might be 0 (even for individual words and not just for long(er) sequences of words)

Movie review dataset — Unigram counts:

_mmmmmmmmm

87,185 19,862 33,0867 | 11,094

35



Handling 00V Words — Alternatives

e Special token for OOV words

m During normalization, replace all OOV words with a special token (e.g., <UNK>)

m Estimate counts and probabilities for sequences involving <UNK> like for regular word

e Subword tokenization (e.g. with Byte-Pair Encoding (BPE) — Week 02)
m Split texts into tokens smaller than words

m Tokens are more likely to be frequent

e Smoothing

36



Qf - Quite Interesting @
6 reddit ¥ r/coolguides t Q @

Break

YOU KEEP USING THAT
WORD

1 D0 NOT THINKIT MEANS
WHAT YOU THINK IT MEANS

29.7k S Contronyms, rare would that have two, opposite, meanings

”
(%]

29.7 Contronyms, rare would that have two, opposite, meanings.

What is a contronym?

Single words that have two
contradictory meanings (they are
their own opposites) are known as
contronyms, and they are quite rare.
Here are ten of them:

apology: a statement of contrition for an
action, or a defence of one
bolt: to secure, or to flee

bound: heading to a destination, or
restrained from movement

cleave: to adhere, or to separate

dust: to add fine particles, or to remove
them

fast: quick, or stuck or made stable
left: remained, or departed

8. peer: a person of tt e N | rar
) oD
bi ty O

9. sanction: to approve, or to boycott

10. weather: to withstand, or to wear away
Mysophobia is the fear of germs
(aka germophobia or bacterophobia)

Angharad Jores
Fast’ can mean 1o mave guickly or to be secured n place
stuck fast, fast asleep, fastened

Josh Wi

“The alarm jest want off*

“Woll turn it off then*
-
b Meaty
Jobn Pottigrew
Screen 10 show something or screen o hide something from

ow

-

d “dela® meanrs both “share™ and

oS condusion when talking abo

-

K Michael
Cleave can mean 10 both kin and teparste

+ 4 Replie
[

Does #t Include mtonstion

Eg “Wil you COme 7" "Sure”

That Can be a wery dfferest ansmer i sarcastically
In d
- L]
» 1 Reply
Marfey Bray
Whon somecns says “Tm sure” it 50 often means they're

not, *I'm sure | terned th the stove off”. But it enmediately
denotes doubt

Cans Miched
Victoria here's once 1or your Bnguage superstars. A be

mero & vyl than the usua synonyms and antonyms

L

@
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Smoothing

e Basic idea

m Avoid assigning probabilities of 0 to unseen n-grams

m "Move" some probability mass from more frequent
n-grams to unseen n-grams

m Also called: discounting

e Basic method: Laplace Smoothing (iso: Add-1 smoothing)
m Example for bigrams

Add1 >

Photo Credits: Capture from The Sixth Sense, dlsmbuted by Buena Vista Pictures.

39



Smoothing — Laplace Smoothing

e Calculating the probabilities

Count [, gpiaee(W1:n—1wn)
PLaplace<wn‘w1:n—1) — P

B Zw CountLaplace(wl n—1W)

_ Count(wy.p—qjwy) + 1
N > w [Count(wy. p—w) + 1]

~ Count(wy. p—qwp) + 1
- Count(wy. 1) +V

Count(wy—1wp) + 1
Count(w,_1)+V

e.g., for bigrams: PLaplace(wn|wn—1> =

40



Smoothing — Laplace Smoothing

e Effects of smoothing on probabilities

Bigram probabilities (without Laplace Smoothing): Bigram probabilities (with Laplace Smoothing):

_MI_ I N R

0.007949 | 0.000229 0.004075 | 0.000123 | 0.000006
0.016413 | O 0.100544 | 0.000403 0.000010 | 0.019401 | 0.000087

m 0.000045 | 0.000127 | 0.0 0.015629 0.000039 | 0.000104 | 0.000002 | 0.012493
0.002073 | 0.001442 | 0.001442 | 0.0 0.000255 | 0.000180 | 0.000180 | 0.000011

e Observations
m No zero probabilities (duh!)

m Some non-zero probabilities have changed quite a bit!

=» For some n-grams: (arguably) too much probability gets moved to zero probabilities

41



Smoothing — Laplace Smoothing

e Effects of smoothing on counts
m Question: What counts — without smoothing — would yield Prapiace(w;|w;—1) ?

Count(w,—yw,) +1  Count™(w,_jw,)
Count(w,_1) +V  Count(w,_1)

PLaplace (wn ’ U}n_l) -

Count(w,_1)

=< Count” (wn—1wn> — (Count(wn_1wn> T 1> ' Count(w 1) +V

Bigram counts (original): Bigram counts (adjusted):

2.83

42



Smoothing — Laplace Smoothing

e Laplace Discount
m (. — ratio of adjusted counts to the original counts

m Only defined where original counts > 1

Laplace discounts:

~ Count™(wy,—1wn)

— Count(w,_1wy,)

43



Add-k Smoothing

e Generalize Laplace (Add-1) Smoothing
m Add k instead of 1

m Set 0 <k <1

P Count(wy_1wy) + k

add-+(WnlWn—1) = Count(wy,_1) + kV

44
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Backoff & Interpolation

e [ntuition: Utilize less context if required

m Assume we want to calculate P(wy,|w,,_2,w,_1) but trigram w,,_ow,, 1wy, is not in the dataset

(1) Backoff
m Make use if bigram probability P(wy,|w,_1)

m If still insufficient, use unigram probability P(wy,)

(2) Interpolation

m Estimate P(wy,|w, 2, w,_1) as a weighted mix
of trigram, bigram, and unigram probabilities

m Learn weights \; from data

m In practice, better than Backoff
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Llneal’ |nterp0|atI0n (example for trigrams)

e Simple interpolation

N

P(wn‘wn—% wn—l) = )\1P<wn) +

Mo P(wn|wn_1) + with Y A;

A3 P (wn |wy 2, wy 1)

e ); conditioned on context
P(wp|wy—2, wn—1) = A (wWp—2, wp_1)P(wy) +
Ao (W —2, Wy —1) P(wp|wp—1) +
P

)\3<wn—27 wn—l) (wn‘wn—% wn—l)

1
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Backoff & Interpolation
e Learn weights \; from data — basic idea

(1) Collect held-out corpus
m Additional corpus or

m Split from initial corpus

(2) Calculate all n-gram probabilities
m Calculation must not consider any held-out corpus!

(3) Find \; that maximizes P(wy|w,,_2, w,_1) over held-out corpus
m e.g., using Expectation-Maximization (EM) algorithm (not further discussed here)
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Outline

e |Language Models
m Motivation
m Sentence Probabilities
m Markov Assumption
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Kneser—Ney Smoothing

e |dea of Kneser—Ney Smoothing: Absolute Discounting Interpolation

/

Remove a fixed value
from all bigram counts

N\

Interpolation but with better

estimates for unigram probabilities

N

maax [Count(wn—1wn)

PKN(wn|wn—1) — Count(wy—1)

/

—49 4 N(wne1) Prey (w,,)

Note: We only look at a bigram language model in the following to keep the examples
and notations easy. Kneser-Ney Smoothing is analogously defined for larger n-grams.
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Kneser—Ney Smoothing — Absolute Discounting

e Absolute discounting

m Remove fixed value ( from bigram counts
(typically: 0 < d < 1)

m Makes probability mass for unigrams available

m Intuition

If Count(w,_jwy,) is large, count is hardly affected

If Count(w,_jwy,) is small, count is not that useful to begin with

-» Question: How to pick the value(s) for d ?

just a fail-safe to avoid
negative probabilities

/

maax |[Count(wn—1wy)—d,0]

Count(wy—1)
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Kneser—Ney Smoothing — Absolute Discounting

e Approach by Church and Gale (1991)
m Compute bigram counts over large training corpus Uil et & OB GELE

. 0 0.000270
m Compute the counts of the same bigrams over a 1 0.448
large test corpus '

2 1.25

m Compute the average count from the test corpus 3 224
with respect to the count in the training corpus 4 393

5 4.21

el

On average, a bigram that occurred 5 times in the 6 523

training corpus occurred 4.21 times in the test corpus 7 6.21

8 7.21

9 8.26

=*» Set d =0.75 (maybe a bit smaller for counts of 1 and 2)

Source: A comparison of the enhanced Good-Turing and deleted estimation methods for estimating probabilities of English bigrams
(Church and Gale, 1991) 52



https://www.sciencedirect.com/science/article/abs/pii/088523089190016J

Kneser-Ney Smoothing — Interpolation with a Twist

e Motivation
mazx [Count(w,_1w,) — d, 0]

PKN(wn|wn—1) — +)\(w7z—1)P(w7z)

Count(w,_1)

Using basic interpolation, that would just be the unigram probability

=» But is this actually a good idea?

Predict the missing word: ‘glasses”
o If “Hong Kong” is very frequent:
“I can’t see without my reading TS P(¥Kong’) > P(“glasses”)

“Kong”
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Kneser-Ney Smoothing — Interpolation with a Twist
e The difference between “glasses” and “Kong” — Intuition

m ‘glasses”is preceded by many other words

m “Kong” almost only preceded by “Hong”

= P(w) = “How likely is w ?” ... Maybe not most intuitive approach

o Alternative: Py n(w) = “How likely is w to appear as a novel continuation?”

m Py y(w) is high < there are many words w' that form an existing bigram w'w

m Pry(w) is low © there are only few words w' that form an existing bigram w'w

=» How can we quantify this?
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Kneser-Ney Smoothing — Interpolation with a Twist

e Calculating P w
9 Prn(w) # words w'that form an

existing bigram w’w

_ H{w" : Count(w'w) > 0}
{(u,v) : Count(uv) > 0}

Pg n(w)

total number of existing bigrams N

normalization to ensure that Z P(wy) =1

n=1
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}Z A A In-Lecture Activity (5 mins)

e Task: find 5+ words where you would expect that Py p(w) > P(w

m Post your answer to Canvas > Discussions > [In-Lecture] L1 ... (2 Feb)
(one student of your group can post the reply, but include your group members’ names)

LL 11

m We already used “Kong” as an example, so try to avoid “Francisco”, “Angeles”,

m Optional: Think about how the context matters (e.g., travel blogs vs. movie reviews)

®® pro Tip: It's not a competition,
but about discussions and sharing ideas

)

Aires”, etc. 1)
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Kneser-Ney Smoothing — Wrapping it Up

Count Wp—-1Wp) — d70
max [Count(wy—1w,) ]+A(wn_1)PKN(wn)
COUTLt(wn—l) "

last missing puzzle piece

Py n(wp|w,—1) =

e Normalizing factor )\
m Required to account for the probability mass we have discounted

d

Mwy—1) = Comntlw, 1) {w' : Count(w,_1w") > 0}
N ~ " J U ~ J
normalized # words that can follow

discount

# words that have been discounted

# times the normalized discount has been applied
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Evaluating Language Models

e A Language Model (LM) is considered good if

m It assigns high probabilities to frequently occurring sentences

m It assigns low probabilities to rarely occurring sentences

e 2 basic approaches to compare LMs

Extrinsic Evaluation Intrinsic Evaluation

e Requires a downstream task e Evaluate each LM on a test corpus

(e.g., spell checker, speech recognition)
e Generally cheaper & faster
e Run downstream task with each
LM and compare the results e Require intrinsic metric to compare LMs

e Can be very expensive & time-consuming =¥ Perplexity (among other metrics)
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Intrinsic Evaluation

e 3 core steps for an intrinsic evaluation

(1) Train LM on a training corpus
(i.e., compute the n-gram probabilities)

(2) Tune parameters of LM using a development corpus
(e.g., kin case of Add-k Smoothing)

(3) Compute evaluation metric on test corpus
(e.g., perplexity)

e Common corpus breakdown: 80/10/10 (s0% training, 10% development, 10% test)
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Perplexity — Intuition

e How easy is it to predict the next word?

Y\ mushrooms 0.1

pepperoni 0.1

, _ anchovies 0.01
| always order pizza with cheese and ...

The 33 President of the US was ... s

fried rice 0.0001
| saw a ...

and 1e-100

S

e Unigrams are terrible at this game. Why?
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Perplexity

e Perplexity — Definition PP(W) = P(wy,wy, ... ,wN)—%
m The best language model is the one that best
predicts an unseen test set: highest P (sentence)

N 1
m Inverse probability of test corpus W - \/P(wl,wg,. LWN)
m Normalized by the number of words N
in test corpus I;
N 1
hain rule: =
chain rule J H Plunfwr, - wn 1)
n=1
N il 1
e.g., for bigrams: =
9 9 nl:[l Plwp|wy 1)

Minimizing perplexity ¢ Maximizing probability



Perplexity — Intuition

e When is the perplexity high z2?

Many n-grams are frequent in the Many n-grams are rare in the training
training corpus but rare in the test corpus corpus but frequent in the test corpus
Very few high P(wy|w,_1) values over test corpus Many low P(wy,|w,_1) values over test corpus

N N 1
High perplexity PP(W) = - -
W) H P(wp|wp—1)

n=1



Perplexity — Practical Consideration

e |n general N
m Each P(wp|w;. ,,_1) rather small = H P(wp|wy. n—1) very small
n=1

m Risk of arithmetic underflow

. . 1
e Again, logarithm to the rescue n PP(W) = =5 P(wy, wy, ..., wy)
= _Nln}:[lp(wnhulv :wn—1>

1 N
= —N Z hl P(wn|w17 e 7w77,—1)
n=1

N
1
e.g., for bigrams: =~ > " In Pwp|wy 1)

n=1
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Perplexity — Toy Example

e Evaluation setup
m Bigram LM trained over 25k movie reviews

m Small test corpus T/ with N = 12
W=

7(s) i like good movies (/s)”,
'/7<

s) the story is funny (/s)”

Caram " plram

neg> in
"i like"

"like good"

"good movies"

"movies </s>"

"<s> the"

"the story"
"story is"
"is funny"

"funny </s>"

0.0882
0.0079
0.0013
0.0062
0.0034
0.0990
0.0156
0.1138
0.0022
0.0081
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Perplexity — Real-World Example

e Evaluation setup

m Unigram, Bigram, Trigram LMs trained over Wall Street Journal articles

m Training corpus: ~38 million words (~20k unique words)

m Test corpus: ~1.5 million words

BT

Perplexity

Source: hitps://web.stanford.edu/~jurafsky/slp3/3.pdf
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In-Lecture Activity

£ A A Quick Quiz (2 mins)

What are the (minimum, maximum)
possible values for perplexity?

(1,V)

v = size of vocabulary




Summary

e |Language Models — assigning probabilities to sentences
m Very important concept for many NLP tasks

m Different methods to compute sentence probabilities
(here: n-grams; later we come back to them using neural networks)

e n-gram Language Models
m Intuitive training =% Maximum Likelihood Estimations

m Main consideration: zero probabilities due to
large n-grams and/or open vocabularies

/ N\

Markov Assumption to limited Focus here: Smoothing
size of considered n-grams (maybe with backoff & interpolation)

In practice, typically a combination
of these and similar approaches
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Image from Daniel West @ YouT:



https://www.youtube.com/watch?v=04JkdHEX3Yk

Pre-Lecture Activity for Next Week

Pre-Lecture Activity for Next Week

e Assigned Task (due before Feb 9)

m Post a 1-2 sentence answer to the following question in the Pre-Lecture forum.
(you will find the thread on Canvas > Discussions > [Pre-Lecture])

"When we want to evaluate classifiers,
why is accuracy alone often not a good metric?"

Side notes:
e This task is meant as a warm-up to provide some context for the next lecture
e No worries if you get lost; we will talk about this in the next lecture
e You can just copy-&-paste others' answers but this won't help you learn better




