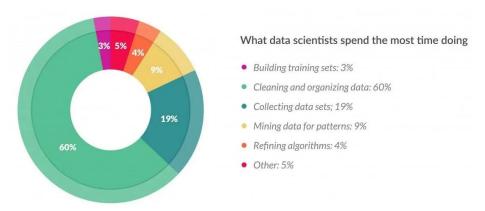


CS4248: Natural Language Processing

Lecture 3 — n-Gram Language Models

What do you want to learn?

- "Understanding LLMs such ChatGPT"
 - Provocative statement: Nobody really <u>understands</u> LLMs, i.e., <u>why/how</u> they work!
 - The way to understand LLMs requires a lot of background which we will cover
 - We end with an introduction into LLMs, but they are not and can not be the focus of CS4248 (a dedicated graduate course covering LLMs is currently in the planning/preparation stage stay tuned!)
 - In practice, fine-tuning LLMs is much more about proper data preparation than the actual training



What do you want to learn?

- HuggingFace, Langchain, Tensorflow, PyTorch, scikit-learn, numpy, etc.
 - The lecture content focusing on the fundamental concept, not specific tools and libraries
 - We provide many practical examples in our series supplementary <u>notebooks</u>
 - You are free and encouraged to explore any available tools/frameworks/libraries for your project

Your Concerns — Our Comments

- "I'm a total NLP/ML noob"
 - CS4248 is a introduction / foundation course we basically start from scratch
 - While some background knowledge is certainly useful, it's not a requirement
 - We only focus on nitty-gritty details required for this course (e.g., we do not cover backpropagation)
- "I'm worried that there will be lots of math."
 - Yes, there will be math, but nothing beyond <u>fundamental</u> concepts of algebra, probability, calculus
 - What need we need in this course, you will need in <u>any</u> computer/data science field!
 - We hope we cover the math bits in sufficient detail and clarity (if not, you can always ask!)

Your Concerns — Our Comments

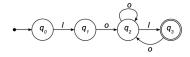
- "I've heard this course is hard!", "I'm afraid of the workload."
 - Bias alert: We don't think that CS4248 is harder (or easier) than other courses
 - The assessment components are very similar to other course participation marks are basically free marks :)
 - Consider assignments not just as an assessment component but as a learning experience
- "I'm worried about the project."
 - With reasonable effort, it is almost impossible to "fail" the project we don't expect SOTA results :)
 - Basic suggestions: start early, continuous progress, regular team meetings (and/or with TA)
 - The project provides some flexibility to cater your background and interests
 - You can and should raise any inter-group conflicts incl. non-contributing members (there will be 2 rounds of peer review sessions using TEAMMATES!)

Recap of Week 02

Relationship to Finite State Automata

- Equivalence
 - Regular Expressions describe Regular Languages (most restricted types of languages with respect to the Chomsky Hierarchy)
 - Regular Language = language accepted by a FSA

Example: FSA that accepts the Regular Language described by the Regular Expression I(o+I)+



Regular Expression I(o+I)+

Regular Language {lol, loool, lolol, looolol, ...}

(Source: Wikipedia) recursively enumerable context-sensitive context-free regular

Chomsky Hierarchy

Minimum Edit Distance — Backtrace & Alignments

A	6	$ \begin{array}{c} \checkmark \leftarrow \downarrow 8 \\ \checkmark \leftarrow \downarrow 7 \end{array} $	∠↓6	↓ 6 ↓ 5	∠ ← ↓ 6	↓ 6 ∠ 5	√ 5 ← 6	← 6 ← 7
U G	5 4	$\checkmark \leftarrow \downarrow 6$ $\checkmark \leftarrow \downarrow 5$	$\downarrow 5$ $\downarrow 4$	√ 4 √ ← ↓ 5	$ \begin{array}{c} \leftarrow 5 \\ \checkmark \leftarrow \downarrow 6 \end{array} $	$ \begin{array}{c} \leftarrow 6 \\ \checkmark \leftarrow \downarrow 7 \end{array} $	←↓ 7 ✓ 6	$\checkmark \leftarrow \downarrow 8$ $\leftarrow 7$
N	3	$\checkmark \leftarrow \downarrow 4$	↓ 3	$\checkmark \leftarrow \downarrow 4$	∠<-↓5	∠/←↓ 6	∠←↓ 7	∠<-↓8
Α	2	∠<-↓3	∠ 2	← 3	$\leftarrow 4$	$\checkmark \leftarrow 5$	← 6	← 7
L	1	$\swarrow \leftarrow \downarrow 2$	$\swarrow \leftarrow \downarrow 3$	$\checkmark\leftarrow\downarrow 4$	$\swarrow \leftarrow \downarrow 5$	$\swarrow \leftarrow \downarrow 6$	∠<-↓7	∠/←↓8
#	0 ;	1	2	3	4	5	6	7
	#/	S	A	U	S	A	G	E

Quick quiz: Why do we choose the diagonal path here?

L A N G U * A G E

| | | | | | | | | | | |

S A * * U S A G E

Complexity analysis
Time: O(n+m)

Tokenization — BPE Token Learner

corpus representation

6	n	е	W	е	s	t	_
5	1	0	W	_			
3	w	i	d	е	s	t	_
2	1	0	w	е	r	_	
1	1	0	n	g	е	r	_

vocabulary

d, e, g, i, l, n, o, r, s, t, w, _

merges

most frequent pair: e & s (9 occurrences)

corpus representation

6	newest_
5	1 o w _
3	widest_
2	lower_
1	longer_

vocabulary

d, e, g, i, l, n, o, r, s, t, w, _, es

merges (e, s)

- \int

most frequent pair: es & t (9 occurrences)

Noisy Channel Model — Calculating/Estimating P(x|w)

$$P(x|w) = \begin{cases} \frac{ins[w_{i-1}, x_i]}{count[w_i]} & \text{, if insertion} \\ \frac{del[w_{i-1}, w_i]}{count[w_{i-1}, w_i]} & \text{, if deletion} \\ \frac{sub[x_i, w_i]}{count[w_i]} & \text{, if substitution} \\ \frac{trans[w_i, w_{i+1}]}{count[w_i, w_{i+1}]} & \text{, if transposition} \end{cases}$$

 w_i = i-th character in the correct word w

 $x_i\;$ = i-th character in the misspelled word x

6

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Pre-Lecture Activity from Last Week

- Assigned Task
 - Post a 1–2 sentence answer to the following question into the L1 Discussion (you will find the thread on Canvas > Discussions)

"What do we mean when we talk about the probability of a sentence?"

Side notes:

- This task is meant as a warm-up to provide some context for the next lecture
- No worries if you get lost; we will talk about this in the next lecture
- You can just copy-&-paste others' answers, but his won't help you learn better

Language Models — Motivation

• Which sentence makes more sense? S_1 or S_2 ?

Example 1:

S₁: "on guys all I of noticed sidewalk three a sudden standing the"

S₂: "all of a sudden I noticed three guys standing on the sidewalk"

Example 2:

S₁: "the role was played by an acressacross famous for her comedic timing"

S₂: "the role was played by an acress famous for her comedic timing"

- But why?
 - Probability of S_2 higher than of S_1 : $P(S_2) > P(S_1)$
- → Language Models Assigning probabilities to a sentence, phrase (or word)

Language Models — Basic Idea

- 2 basic notions of probabilities
 - (1) Probability of a sequence of words $\ W$

$$P(W) = P(w_1, w_2, w_3, \dots, w_n)$$

Example: $P("remember\ to\ submit\ your\ assignment")$

(2) Probability of an upcoming word w_n

$$P(w_n \mid w_1, w_2, w_3, \dots, w_{n-1})$$

Example: P("assignment" | "remember to submit your")

In this lecture: How to calculate these probabilities?

Language Models — Applications

- Language Models are fundamental for many NLP tasks
 - Speech Recognition P("we built this city on rock and roll") > P("we built this city on sausage rolls")
 - Spelling correction P("...has no mistakes") > P("...has no mistakes")
 - Grammar correction $P("...has\ improved") > P("...has\ improved")$
 - Machine Translation P("I went home") > P("I went to home")

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Probabilities of Sentences (more generally: sequence of words)

- Quick review: Chain Rule (allows the iterative calculation of joint probabilities)
 - Chain rule for 2 random events: $P(A_1, A_2) = P(A_2|A_1) \cdot P(A_1)$
 - Chain rule for 3 random events: $P(A_1,A_2,A_3) = P(A_3|A_1,A_2) \cdot P(A_1,A_2) \\ = P(A_3|A_1,A_2) \cdot P(A_2|A_1) \cdot P(A_1)$

■ ..

Probabilities of Sentences

Chain rule — generalization to N random events

$$P(A_1,\ldots,A_N) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_{1:\;2}) \cdot \cdots \cdot P(A_N|A_{1:\;N-1})$$

$$= \prod_{i=1}^N P(A_i|A_{1:\;i-1})$$

$$i:j$$
 — sequence notations

→ Chain rule applied to sequences of words

$$P(w_1, \dots, w_N) = P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_{1:2}) \cdot \dots \cdot P(w_N|w_{1:N-1})$$

$$= \prod_{i=1}^{N} P(w_i|w_{1:i-1})$$

Probabilities of Sentences

Calculating the probabilities using Maximum Likelihood Estimations

$$P(w_n|w_{1:n-1}) = \frac{Count(w_{1:n-1}w_n)}{\sum_{w} Count(w_{1:n-1}w)} = \frac{Count(w_{1:n})}{Count(w_{1:n-1})}$$

Probabilities of Sentences — Example

(1) Application of Chain Rule

```
P("remember \ to \ submit \ your \ assignment") = P("remember") \cdot \\ P("to" \mid "remember") \cdot \\ P("submit" \mid "remember \ to") \cdot \\ P("your" \mid "remember \ to \ submit") \cdot \\ P("assignment" \mid "remember \ to \ submit \ your")
```

(2) Maximum Likelihood Estimation

$$P("remember") = \frac{Count("remember")}{N}$$

$$P("to" \mid "remember") = \frac{Count("remember to")}{Count("remember")}$$

• • •

$$P("assignment" \mid "remember \ to \ submit \ your") = \frac{Count("remember \ to \ submit \ your")}{Count("remember \ to \ submit \ your")}$$

Probabilities of Sentences — **Problems**

$$P("assignment" \mid "remember \ to \ submit \ your") = \frac{Count("remember \ to \ submit \ your")}{Count("remember \ to \ submit \ your")}$$

- Problem: (very) long sequences
 - Large number of entries in table with joint probabilities

(we can ignore $\frac{0}{0}$ here; this can be handled in the implementation)

→ Can we keep the sequences short?

Outline

Language Models

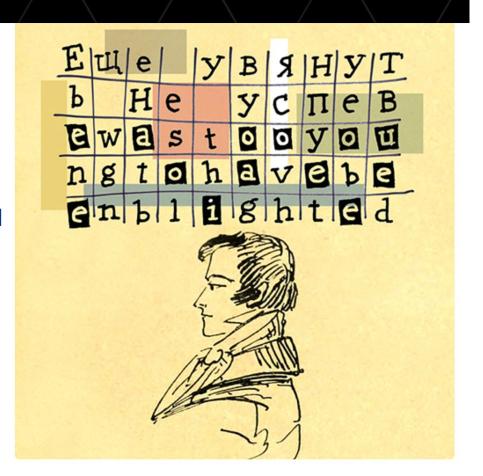
- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges

Smoothing

- Laplace Smoothing
- Backoff & Interpolation
- Kneser-Ney Smoothing
- Evaluating Language Models

american Scientist

"The first application of [A. A. Markov's chains] was to a textual analysis of Alexander Pushkin's poem Eugene Onegin. Here a snippet of one verse appears (in Russian and English) along with Pushkin's own sketch of his protagonist Onegin."



Markov Assumption

Probabilities depend on only on the last k words

$$P(w_1, \dots, w_N) = \prod_{n=1}^N P(w_n | w_{1:n-1}) = \prod_{n=1}^N P(w_n | w_{n-k:n-1})$$

• For our example:

$$P("assignment" \mid "remember\ to\ submit\ your") pprox P("assignment" \mid "your") \ P("assignment" \mid "submit\ your") \ P("assignment" \mid "to\ submit\ your") \ \dots$$

n-Gram Models (consider the only *n-1* last words)

Unigram (1-gram): $P(w_n|w_{1:n-1}) \approx ???$

Bigram (2-gram): $P(w_n|w_{1:n-1}) \approx ???$

Trigram (3-gram): $P(w_n|w_{1:n-1}) \approx ???$

n-Gram Models (consider the only *n-1* last words)

n-Gram Models

Maximum Likelihood Estimation

Unigram (1-gram):
$$P(w_n|w_{1:n-1}) \approx P(w_n)$$

$$P(w_n) = \frac{Count(w_n)}{\# \ words}$$

$$\textbf{Bigram (2-gram):} \quad P(w_n|w_{1:\;n-1}) \approx P(w_n|w_{n-1})$$

$$P(w_n|w_{n-1}) = \frac{Count(w_{n-1}w_n)}{Count(w_{n-1})}$$

Trigram (3-gram):
$$P(w_n|w_{1:n-1}) \approx P(w_n|w_{n-2},w_{n-1})$$
 $P(w_n|w_{n-1},w_{n-2}) = \frac{Count(w_{n-2}w_{n-1}w_n)}{Count(w_{n-2}w_{n-1})}$

$$P(w_n|w_{n-1}, w_{n-2}) = \frac{Count(w_{n-2}w_{n-1}w_n)}{Count(w_{n-2}w_{n-1})}$$

$$\text{General MLE for } \textit{n-} \text{grams: } P(w_i|w_{n-N+1:\,n-1}) = \frac{Count(w_{n-N+1:\,i})}{Count(w_{n-N+1:\,n-1})}$$

- n-Gram models in practice
 - 3-gram, 4-gram, 5-gram models very common
 - The larger the n-grams, the more data required

n-Gram Models — Bigram Example

Example corpus with 3 sentences

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

$$P("I" | " < s > ") = \frac{Count(" < s > I")}{Count(" < s > ")} =$$

$$P("am"|"I") = \frac{Count("I \ am")}{Count("I")} =$$

$$P("Sam"|"am") = \frac{Count("am Sam")}{Count("am")} =$$

$$P(""|"Sam") = \frac{Count("Sam ")}{Count("Sam")} =$$

n-Gram Models — Bigram Example

Example corpus with 3 sentences

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

$$P("I" | " < s > ") = \frac{Count(" < s > I")}{Count(" < s > ")} = \frac{2}{3}$$

$$P("am"|"I") = \frac{Count("I am")}{Count("I")} = \frac{2}{3}$$

$$P("Sam"|"am") = \frac{Count("am\ Sam")}{Count("am")} = \frac{1}{2}$$

$$P(""|"Sam") = \frac{Count("Sam ")}{Count("Sam")} = \frac{1}{2}$$

n-Gram Models — Bigram Example (25,000 Movie Reviews)

 $P(" < s > i \ like \ the \ story \ </s >") = ???$

Unigram counts:

i	like	the	story
87,185	19,862	33,0867	11,094

Bigram counts:

	i	like	the	story	
i	1	693	20	0	
like	like 326		1,997	8	
the	15	42	148	5171	
story	23	16	16	0	

n-Gram Models — Bigram Example (25,000 Movie Reviews)

 $P(" < s > i \ like \ the \ story \ </s >") = ???$

Unigram counts:

i	like	the	story
87,185	19,862	33,0867	11,094

Bigram counts:

	i	like	the	story	
i	0	693	20	0	
like	like 326		1,997	8	
the	15	42	0	5,171	
story	23	16	16	0	

Bigram probabilities:

	i	like	the	story
i	0.0	0.007949	0.000229	0.0
like	0.016413	0	0.100544	0.000403
the	0.000045	0.000127	0.0	0.015629
story	0.002073	0.001442	0.001442	0.0

Example calculation:

$$P("like"|"i") = \frac{Count("i\ like")}{Count("i")} = \frac{693}{87185} = 0.007949$$

n-Gram Models — Bigram Example (25,000 Movie Reviews)

Bigram probabilities:

	i	like	the	story	
i	0.0	0.007949	0.000229	0.0	
like	0.016413	0.0	0.100544	0.000403	
the	the 0.000045		0.0	0.015629	
story	0.002073	0.001442	0.001442	0.0	

Not in the table:

$$P("i" | " < s > ") = 0.088198$$

$$P(""|"story") = 0.001262$$

$$P(" ~~i like the story~~ ") = P("i" | "~~") \cdot P("like" | "i") \cdot P("the" | "like") \cdot P("story" | "the") \cdot P("~~"| "story")$$

$$P("<\!s\!>~i~like~the~story~<\!/s\!>")=~0.088198~\cdot$$

$$0.007949 \cdot$$

$$0.100544$$
 ·

$$0.015629 \cdot$$

$$P(" < s > i \ like \ the \ story \ ") = 0.00000000139$$

n-Gram Models — Practical Consideration

- In general
 - Each $P(w_n|w_{1:n-1})$ rather small $\rightarrow \prod_{n=1}^{\infty} P(w_n|w_{1:n-1})$ very small
 - Risk of arithmetic underflow

- → Always use an equivalent logarithmic format
 - Logarithm is a strictly monotonic function

$$P_1 \cdot P_2 \cdot P_3 \cdot \dots \cdot P_N \propto \log (P_1 \cdot P_2 \cdot P_3 \cdot \dots \cdot P_N)$$
$$= \log P_1 + \log P_2 + \log P_3 \cdot \dots \cdot \log P_N$$

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Handling OOV Words — Closed vs. Open Vocabulary

- Closed vocabulary
 - All strings contain words from a fixed vocabulary
 - → No unknown words

- Open Vocabulary
 - Strings may contain words that are not in the vocabulary (oov words)
 - Examples: proper nouns, mismatching context
 - → Counts might be 0 (even for individual words and not just for long(er) sequences of words)

Movie review dataset — Unigram counts:

i	like	the	story	costner	einstein	planck	biden	integral	adverb	tensor	nlp
87,185	19,862	33,0867	11,094	67	20	0	0	27	0	0	0

Handling OOV Words — Alternatives

- Special token for OOV words
 - During normalization, replace all OVV words with a special token (e.g., <UNK>)
 - Estimate counts and probabilities for sequences involving <UNK> like for regular word
- Subword tokenization (e.g., with Byte-Pair Encoding (BPE) Week 02)
 - Split texts into tokens smaller than words
 - Tokens are more likely to be frequent
- Smoothing

Break

Posted by u/Gallagher202 2 years ago 💍

and seed can mean to plant seeds, but also to remove seeds.

A contronym is a single word with two definitions that are contradictory.

For instance, dust can mean to cover with dust, but also to remove dust,

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - **■** Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Smoothing

Basic idea

- Avoid assigning probabilities of 0 to unseen n-grams
- "Move" some probability mass from more frequent n-grams to unseen n-grams
- Also called: discounting

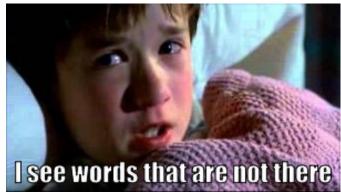


Photo Credits: Capture from The Sixth Sense, distributed by Buena Vista Pictures.

- Basic method: Laplace Smoothing (also: Add-1 Smoothing)
 - Example for bigrams

	i	like	the	story
i	0	693	20	0
like	326	0	1,997	8
the	15	42	0	5,171
story	23	16	16	0

	i	like	the	story
i	1	69 <mark>4</mark>	21	1
like	32 <mark>7</mark>	1	1,998	9
the	16	43	1	5,17 <mark>2</mark>
story	24	17	17	1

Calculating the probabilities

$$P_{Laplace}(w_{n}|w_{1:n-1}) = \frac{Count_{Laplace}(w_{1:n-1}w_{n})}{\sum_{w} Count_{Laplace}(w_{1:n-1}w_{n})}$$

$$= \frac{Count(w_{1:n-1}w_{n}) + 1}{\sum_{w} [Count(w_{1:n-1}w_{n}) + 1]}$$

$$= \frac{Count(w_{1:n-1}w_{n}) + 1}{Count(w_{1:n-1}) + V}$$

e.g., for bigrams:
$$P_{Laplace}(w_n|w_{n-1}) = \frac{Count(w_{n-1}w_n) + 1}{Count(w_{n-1}) + V}$$

Effects of smoothing on probabilities

Bigram probabilities (without Laplace Smoothing):

	i	like	the	story
i	0.0	0.007949	0.000229	0.0
like	0.016413	0	0.100544	0.000403
the	0.000045	0.000127	0.0	0.015629
story	0.002073	0.001442	0.001442	0.0

Bigram probabilities (with Laplace Smoothing):

	i	like	the	story
i	0.000006	0.004075	0.000123	0.000006
like	0.003175	0.000010	0.019401	0.000087
the	0.000039	0.000104	0.000002	0.012493
story	0.000255	0.000180	0.000180	0.000011

Observations

- No zero probabilities (duh!)
- Some non-zero probabilities have changed quite a bit!
- → For some n-grams: (arguably) too much probability gets moved to zero probabilities

- Effects of smoothing on counts
 - Question: What counts without smoothing would yield $P_{Laplace}(w_i|w_{i-1})$?

$$P_{Laplace}(w_n|w_{n-1}) = \frac{Count(w_{n-1}w_n) + 1}{Count(w_{n-1}) + V} = \frac{Count^*(w_{n-1}w_n)}{Count(w_{n-1})}$$

$$\rightarrow Count^*(w_{n-1}w_n) = (Count(w_{n-1}w_n) + 1) \cdot \frac{Count(w_{n-1})}{Count(w_{n-1}) + V}$$

Bigram counts (original):

	i	like	the	story
i	0	693	20	0
like	326	0	1,997	8
the	15	42	0	5,171
story	23	16	16	0

Bigram counts (adjusted):

	i	like	the	story
i	0.51	355.28	10.75	0.51
like	63.07	0.19	385.34	1.74
the	12.79	34.37	0.80	4133.5
story	2.83	2.00	2.00	0.12

- Laplace Discount
 - $lacktriangledown d_c$ ratio of adjusted counts to the original counts
 - Only defined where original counts > 1

$$d_c = \frac{Count^*(w_{n-1}w_n)}{Count(w_{n-1}w_n)}$$

Laplace discounts:

	i	like	the	story
i		0.51	0.54	
like	0.19		0.19	0.22
the	0.85	0.82		0.80
story	0.12	0.13	0.13	

Add-*k* Smoothing

- Generalize Laplace (Add-1) Smoothing
 - Add k instead of 1
 - Set $0 < k \le 1$

$$P_{add-k}(w_n|w_{n-1}) = \frac{Count(w_{n-1}w_n) + k}{Count(w_{n-1}) + kV}$$

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Backoff & Interpolation

- Intuition: Utilize less context if required
 - Assume we want to calculate $P(w_n|w_{n-2},w_{n-1})$ but trigram $w_{n-2}w_{n-1}w_n$ is not in the dataset

(1) Backoff

- Make use if bigram probability $P(w_n|w_{n-1})$
- lacktriangle If still insufficient, use unigram probability $P(w_n)$

(2) Interpolation

- Estimate $P(w_n|w_{n-2},w_{n-1})$ as a weighted mix of trigram, bigram, and unigram probabilities
- Learn weights λ_i from data
- In practice, better than Backoff

Linear Interpolation (example for trigrams)

Simple interpolation

$$\hat{P}(w_n|w_{n-2}, w_{n-1}) = \lambda_1 P(w_n) + \lambda_2 P(w_n|w_{n-1}) + \text{ with } \sum_i \lambda_i = 1$$

$$\lambda_3 P(w_n|w_{n-2}, w_{n-1})$$

• λ_i conditioned on context

$$\hat{P}(w_n|w_{n-2},w_{n-1}) = \lambda_1(w_{n-2},w_{n-1})P(w_n) + \lambda_2(w_{n-2},w_{n-1})P(w_n|w_{n-1}) + \lambda_3(w_{n-2},w_{n-1})P(w_n|w_{n-2},w_{n-1})$$

Backoff & Interpolation

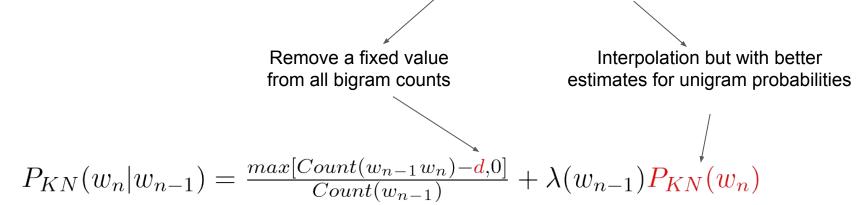
- ullet Learn weights λ_i from data basic idea
 - (1) Collect held-out corpus
 - Additional corpus or
 - Split from initial corpus
 - (2) Calculate all n-gram probabilities
 - Calculation must not consider any held-out corpus!
 - (3) Find λ_i that maximizes $\hat{P}(w_n|w_{n-2},w_{n-1})$ over held-out corpus
 - e.g., using Expectation-Maximization (EM) algorithm (not further discussed here)

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Kneser-Ney Smoothing

Idea of Kneser–Ney Smoothing: Absolute Discounting Interpolation



Note: We only look at a bigram language model in the following to keep the examples and notations easy. Kneser-Ney Smoothing is analogously defined for larger n-grams.

Kneser-Ney Smoothing — **Absolute Discounting**

Absolute discounting

- Remove fixed value d from bigram counts (typically: 0 < d < 1)
- Makes probability mass for unigrams available
- Intuition

```
If Count(w_{n-1}w_n) is large, count is hardly affected If Count(w_{n-1}w_n) is small, count is not that useful to begin with
```

just a fail-safe to avoid negative probabilities $\frac{max[Count(w_{n-1}w_n) - \textbf{d}, 0]}{Count(w_{n-1})}$

→ Question: How to pick the value(s) for d?

Kneser-Ney Smoothing — **Absolute Discounting**

- Approach by Church and Gale (1991)
 - Compute bigram counts over large training corpus
 - Compute the counts of the same bigrams over a large test corpus
 - Compute the average count from the test corpus with respect to the count in the training corpus

On average, a bigram that occurred 5 times in the training corpus occurred 4.21 times in the test corpus

Bigram count in training corpus	Bigram count in test corpus
0	0.000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

ightharpoonup Set d=0.75 (maybe a bit smaller for counts of 1 and 2)

Kneser-Ney Smoothing — Interpolation with a Twist

Motivation

$$P_{KN}(w_n|w_{n-1}) = \frac{max \left[Count(w_{n-1}w_n) - d, 0\right]}{Count(w_{n-1})} + \lambda(w_{n-1})P(w_n)$$

Using basic interpolation, that would just be the unigram probability

→ But is this actually a good idea?

```
"I can't see without my reading _____"  \begin{cases} \dots \\ \text{"glasses"} \\ \dots \\ P(\text{``Kong"}) > P(\text{``glasses"}) \end{cases} 
"Kong"
```

Kneser-Ney Smoothing — Interpolation with a Twist

- The difference between "glasses" and "Kong" Intuition
 - "glasses" is preceded by many other words
 - "Kong" almost only preceded by "Hong"
 - $\rightarrow P(w) =$ "How likely is w?" ... Maybe not most intuitive approach

- Alternative: $P_{KN}(w) =$ "How likely is w to appear as a novel continuation?"
 - $lacksquare P_{KN}(w)$ is high \Leftrightarrow there are $\underline{\mathsf{many words}}\,w'$ that form an existing bigram w'w
 - \blacksquare $P_{KN}(w)$ is low \Leftrightarrow there are <u>only few words</u> w' that form an existing bigram w'w
 - → How can we quantify this?

Kneser-Ney Smoothing — Interpolation with a Twist

• Calculating $P_{KN}(w)$

The containing
$$P_{KN}(w)$$
 and with a form an existing bigram $w'w$ and w' and w

Kneser-Ney Smoothing — Wrapping it Up

$$P_{KN}(w_n|w_{n-1}) = \frac{max\left[Count(w_{n-1}w_n) - d, 0\right]}{Count(w_{n-1})} + \underbrace{\lambda(w_{n-1})}_{\text{last missing puzzle piece}} P_{KN}(w_n)$$

- Normalizing factor λ
 - Required to account for the probability mass we have discounted

$$\lambda(w_{n-1}) = \underbrace{\frac{d}{Count(w_{n-1})}}_{\text{normalized discount}} \cdot \underbrace{|\{w': Count(w_{n-1}w') > 0\}|}_{\text{words that can follow discount}}$$

$$= \# \text{ words that have been discount dashed applied}$$

$$= \# \text{ times the normalized discount has been applied}$$

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Evaluating Language Models

- A Language Model (LM) is considered good if
 - It assigns high probabilities to frequently occurring sentences
 - It assigns low probabilities to rarely occurring sentences
- 2 basic approaches to compare LMs

Extrinsic Evaluation

- Requires a downstream task (e.g., spell checker, speech recognition)
- Run downstream task with each
 LM and compare the results
- Can be very expensive & time-consuming

Intrinsic Evaluation

- Evaluate each LM on a test corpus
- Generally cheaper & faster
- Require intrinsic metric to compare LMs
 - → Perplexity (among other metrics)

Intrinsic Evaluation

- 3 core steps for an intrinsic evaluation
 - (1) Train LM on a **training corpus** (i.e., compute the n-gram probabilities)
 - (2) Tune parameters of LM using a **development corpus** (e.g., *k* in case of Add-*k* Smoothing)
 - (3) Compute evaluation metric on **test corpus** (e.g., perplexity)

Common corpus breakdown: 80/10/10 (80% training, 10% development, 10% test)

Perplexity — Intuition

How easy is it to predict the next word?

```
mushrooms 0.1

pepperoni 0.1

anchovies 0.01

The 33<sup>rd</sup> President of the US was ...

I saw a ...

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

....

fried rice 0.0001

....

and 1e-100
```

Unigrams are terrible at this game. Why?

Perplexity

Perplexity — Definition

- The best language model is the one that best Predicts an unseen test set (highest P(sentence))
- lacktriangle Inverse probability of test corpus W
- $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} Normalized by the number of words N \\ & \begin{tabular}{ll} in test corpus \end{tabular}$

$$PP(W) = P(w_1, w_2, \dots, w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1, w_2, \dots, w_N)}}$$

chain rule:
$$= \sqrt[N]{\prod_{n=1}^{N} \frac{1}{P(w_n|w_1,\ldots,w_{n-1})}}$$

e.g., for bigrams:
$$= \sqrt[N]{\prod_{n=1}^{N} \frac{1}{P(w_n|w_{n-1})}}$$

Perplexity — Intuition

When is the perplexity high \(\superset ? \)

Many n-grams are <u>frequent</u> in the training corpus but <u>rare</u> in the test corpus

Very few high $P(w_n|w_{n-1})$ values over test corpus

High perplexity
$$PP(W) = \sqrt[N]{\prod_{n=1}^{N} \frac{1}{P(w_n|w_{n-1})}}$$

Many n-grams are <u>rare</u> in the training corpus but <u>frequent</u> in the test corpus

Many low $P(w_n|w_{n-1})$ values over test corpus

Perplexity — Practical Consideration

- In general
 - Each $P(w_n|w_{1:n-1})$ rather small $\rightarrow \prod_{n=1}^{\infty} P(w_n|w_{1:n-1})$ very small
 - Risk of arithmetic underflow
- Again, logarithm to the rescue

$$PP(W) = e^{\ln PP(W)}$$

$$\ln PP(W) = -\frac{1}{N}P(w_1, w_2, \dots, w_N)$$

$$= -\frac{1}{N} \ln \prod_{n=1}^{N} P(w_n | w_1, \dots, w_{n-1})$$

$$= -\frac{1}{N} \sum_{n=1}^{N} \ln P(w_n | w_1, \dots, w_{n-1})$$

e.g., for bigrams:
$$= -\frac{1}{N} \sum_{n=1}^{N} \ln P(w_n|w_{n-1})$$

Perplexity — Toy Example

- Evaluation setup
 - Bigram LM trained over 25k movie reviews
 - Small test corpus W with N=12

$$W = \begin{bmatrix} \\ \text{"}\langle s \rangle \text{ i like good movies } \langle /s \rangle \text{"}, \\ \text{"}\langle s \rangle \text{ the story is funny } \langle /s \rangle \text{"} \end{bmatrix}$$

$$PP(W) = \sqrt[N]{\prod_{n=1}^{N} \frac{1}{P(w_n|w_{n-1})}} = 40.1$$

bigram	P(bigram)
" <s> i"</s>	0.0882
"i like"	0.0079
"like good"	0.0013
"good movies"	0.0062
"movies "	0.0034
" <s> the"</s>	0.0990
"the story"	0.0156
"story is"	0.1138
"is funny"	0.0022
"funny "	0.0081

Perplexity — Real-World Example

Evaluation setup

- Unigram, Bigram, Trigram LMs trained over *Wall Street Journal* articles
- Training corpus: ~38 million words (~20k unique words)
- Test corpus: ~1.5 million words

	Unigram	Bigram	Trigram
Perplexity	962	170	109

Summary

- Language Models assigning probabilities to sentences
 - Very important concept for many NLP tasks
 - Different methods to compute sentence probabilities (here: n-grams; later we come back to them using neural networks)
- n-gram Language Models
 - Intuitive training → Maximum Likelihood Estimations
 - Main consideration: zero probabilities due to large n-grams and/or open vocabularies

Markov Assumption to limited size of considered n-grams

Focus here: **Smoothing** (maybe with backoff & interpolation)

In practice, typically a combination of these and similar approaches

Pre-Lecture Activity for Next Week

