

CS4248: Natural Language Processing

Lecture 3 — n-Gram Language Models

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Language Models — Motivation

• Which sentence makes more sense? S_1 or S_2 ?

Example 1:

S₁: "on guys all I of noticed sidewalk three a sudden standing the"

S₂: "all of a sudden I noticed three guys standing on the sidewalk"

Example 2:

S₁: "the role was played by an acressacross famous for her comedic timing"

S₂: "the role was played by an acressactress famous for her comedic timing"

- But why?
 - Probability of S_2 higher than of S_1 : $P(S_2) > P(S_1)$
- → Language Models Assigning probabilities to a sentence, phrase (or word)

Language Models — Basic Idea

- 2 basic notions of probabilities
 - (1) Probability of a sequence of words $\ W$

$$P(W) = P(w_1, w_2, w_3, \dots, w_n)$$

Example: $P("remember\ to\ submit\ your\ assignment")$

(2) Probability of an upcoming word w_n

$$P(w_n \mid w_1, w_2, w_3, \dots, w_{n-1})$$

Example: $P("assignment" \mid "remember\ to\ submit\ your")$

In this lecture: How to calculate these probabilities?

Language Models — Applications

- Language Models fundamental for many NLP task
 - Speech Recognition P("we built this city on rock and roll") > P("we built this city on sausage rolls")
 - Spelling correction P("...has no mistakes") > P("...has no mistakes")
 - Grammar correction $P("...has\ improved") > P("...has\ improved")$
 - Machine Translation $P("I\ went\ home") > P("I\ went\ to\ home")$

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Probabilities of Sentences (more generally: sequence of words)

$$P("remember\ to\ submit\ your\ assignment")\\P("assignment"\ |\ "remember\ to\ submit\ your")$$
 \rightarrow How to calculate those probabilities?

- Quick review: Chain Rule (allows the iterative calculation of joint probabilities)
 - Chain rule for 2 random events: $P(A_1,A_2) = P(A_2|A_1) \cdot P(A_1)$
 - $\begin{array}{ll} \blacksquare & \text{Chain rule for 3 random events:} & P(A_1,A_2,A_3) = P(A_3|A_1,A_2) \cdot P(A_1,A_2) \\ & = P(A_3|A_1,A_2) \cdot P(A_2|A_1) \cdot P(A_1) \end{array}$

. . . .

Probabilities of Sentences

Chain rule — generalization to N random events

$$P(A_1,\ldots,A_N) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_{1:\;2}) \cdot \cdots \cdot P(A_N|A_{1:\;N-1})$$

$$= \prod_{i=1}^N P(A_i|A_{1:\;i-1})$$

$$i:j$$
 — sequence notations

→ Chain rule applied to sequences of words

$$P(w_1, \dots, w_N) = P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_{1:2}) \cdot \dots \cdot P(w_N|w_{1:N-1})$$

$$= \prod_{i=1}^{N} P(w_i|w_{1:i-1})$$

Quick Quiz

Given two random events A_1 and A_2 with known probabilities $P(A_1)$ and $P(A_2)$, which statement on the right is **always** correct?

$$P(A_1) > P(A_1 | A_2)$$

B

$$P(A_1) < P(A_1 | A_2)$$

C

$$P(A_1) = P(A_1 | A_2)$$

D

none of the above

Probabilities of Sentences

Calculating the probabilities using Maximum Likelihood Estimations

$$P(w_n|w_{1:n-1}) = \frac{Count(w_{1:n-1}w_n)}{\sum_w Count(w_{1:n-1}w)} = \frac{Count(w_{1:n})}{Count(w_{1:n-1})}$$
 Assuming $w_{1:n-1}$ is part for the n-gram (i.e., it must be followed by a word)

Quick quiz: Why does the denominator simplify like this?

Probabilities of Sentences — Example

(1) Application of Chain Rule

```
P("remember\ to\ submit\ your\ assignment") = P("remember") \cdot \\ P("to"\ |\ "remember") \cdot \\ P("submit"\ |\ "remember\ to") \cdot \\ P("your"\ |\ "remember\ to\ submit") \cdot \\ P("assignment"\ |\ "remember\ to\ submit\ your")
```

(2) Maximum Likelihood Estimation

$$P("remember") = \frac{Count("remember")}{N}$$

$$P("to" \mid "remember") = \frac{Count("remember \ to")}{Count("remember")}$$

Do you see any problems?

...

$$P("assignment" \mid "remember\ to\ submit\ your") = \frac{Count("remember\ to\ submit\ your")}{Count("remember\ to\ submit\ your")}$$

Probabilities of Sentences — **Problems**

$$P("assignment" \mid "remember\ to\ submit\ your") = \frac{Count("remember\ to\ submit\ your\ "signment")}{Count("remember\ to\ submit\ your")}$$

- Problem: (very) long sequences
 - Large number of entries in table with joint probabilities

(we can ignore $\frac{0}{0}$ here; this can be handled in the implementation)

→ Can we keep the sequences short?

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Markov Assumption

Probabilities depend on only on the last k words

$$P(w_1, \dots, w_N) = \prod_{n=1}^N P(w_n | w_{1:n-1}) = \prod_{n=1}^N P(w_n | w_{n-k:n-1})$$

For our example:

```
P("assignment" \mid "remember\ to\ submit\ your") \approx P("assignment" \mid "your") P("assignment" \mid "submit\ your") P("assignment" \mid "to\ submit\ your") \dots
```

n-Gram Models (consider the only *n-1* last words)

Unigram (1-gram): $P(w_n|w_{1:n-1}) \approx P(w_n)$

Bigram (2-gram): $P(w_n|w_{1:n-1}) \approx P(w_n|w_{n-1})$

Trigram (3-gram): $P(w_n|w_{1:n-1}) \approx P(w_n|w_{n-2},w_{n-1})$

n-Gram Models

Maximum Likelihood Estimation

$$\begin{array}{ll} \text{Unigram (1-gram):} & P(w_n|w_{1:\;n-1}) \approx P(w_n) \\ & P(w_n) = \frac{Count(w_n)}{\#words} \\ \\ \text{Bigram (2-gram):} & P(w_n|w_{1:\;n-1}) \approx P(w_n|w_{n-1}) \\ & P(w_n|w_{n-1}) = \frac{Count(w_{n-1}w_n)}{Count(w_{n-1})} \\ \\ \text{Trigram (3-gram):} & P(w_n|w_{1:\;n-1}) \approx P(w_n|w_{n-2},w_{n-1}) \\ & P(w_n|w_{n-1},w_{n-2}) = \frac{Count(w_{n-2}w_{n-1}w_n)}{Count(w_{n-2}w_{n-1})} \\ \end{array}$$

$$\text{General MLE for } \textit{n-} \text{grams: } P(w_i|w_{n-N+1:\,n-1}) = \frac{Count(w_{n-N+1:\,i})}{Count(w_{n-N+1:\,n-1})}$$

- n-Gram models in practice
 - 3-gram, 4-gram, 5-gram models very common
 - The larger the n-grams, the more data required

n-Gram Models — Bigram Example

Example corpus with 3 sentences

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

$$P("I"|" < s > ") = \frac{Count(" < s > I")}{Count(" < s > ")} =$$

$$P("am"|"I") = \frac{Count("I~am")}{Count("I")} =$$

$$P("Sam"|"am") = \frac{Count("am\ Sam")}{Count("am")} =$$

$$P(""|"Sam") = \frac{Count("Sam ")}{Count("Sam")} =$$

n-Gram Models — Bigram Example

Example corpus with 3 sentences

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

$$P("I"|" < s > ") = \frac{Count(" < s > I")}{Count(" < s > ")} = \frac{2}{3}$$

$$P("am"|"I") = \frac{Count("I\ am")}{Count("I")} = \frac{2}{3}$$

$$P("Sam"|"am") = \frac{Count("am\ Sam")}{Count("am")} = \frac{1}{2}$$

$$P(""|"Sam") = \frac{Count("Sam ")}{Count("Sam")} = \frac{1}{2}$$

n-Gram Models — Bigram Example (25,000 Movie Reviews)

$$P(" < s > i \ like \ the \ story \ ") = ???$$

Unigram counts:

i	like	the	story
87,185	19,862	33,0867	11,094

Bigram counts:

	i	like	the	story
i	1	693	20	0
like	326	3	1,997	8
the	15	42	148	5171
story	23	16	16	0

n-Gram Models — Bigram Example (25,000 Movie Reviews)

 $P(" < s > i \ like \ the \ story \ </s >") = ???$

Unigram counts:

i	like	the	story
87,185	19,862	33,0867	11,094

Bigram counts:

	i	like	the	story
i	0	693	20	0
like	326	0	1,997	8
the	15	42	0	5,171
story	23	16	16	0

Bigram probabilities:

	i	like	the	story
i	0.0	0.007949	0.000229	0.0
like	0.016413	0	0.100544	0.000403
the	0.000045	0.000127	0.0	0.015629
story	0.002073	0.001442	0.001442	0.0

Example calculation:

$$P("like"|"i") = \frac{Count("i\ like")}{Count("i")} = \frac{693}{87185} = 0.007949$$

n-Gram Models — Bigram Example (25,000 Movie Reviews)

Bigram probabilities:

	i	like	the	story
i	0.0	0.007949	0.000229	0.0
like	0.016413	0.0	0.100544	0.000403
the	0.000045	0.000127	0.0	0.015629
story	0.002073	0.001442	0.001442	0.0

Not in the table:

$$P("i"|" < s > ") = 0.088198$$

$$P(""|"story") = 0.001262$$

$$P(" < s > i \ like \ the \ story \ ") = P("i" | " < s >") \cdot P("like" | "i") \cdot P("the" | "like") \cdot P("story" | "the") \cdot P("story" | "story")$$

$$P("\,{<}s{>}\ i\ like\ the\ story\ {}")=\ 0.088198\ \cdot$$

$$0.007949 \cdot$$

$$0.015629 \cdot$$

$$P(" < s > i \ like \ the \ story \ ") = 0.00000000139$$

Quick quiz: Why don't we need P(" < s >")?

n-Gram Models — Practical Consideration

- In general
 - Each $P(w_n|w_{1:n-1})$ rather small $\rightarrow \prod_{n=1}^{\infty} P(w_n|w_{1:n-1})$ very small
 - Risk of arithmetic underflow

- → Always use an equivalent logarithmic format
 - Logarithm is a strictly monotonic function

$$P_1 \cdot P_2 \cdot P_3 \cdot \dots \cdot P_N \propto \log (P_1 \cdot P_2 \cdot P_3 \cdot \dots \cdot P_N)$$
$$= \log P_1 + \log P_2 + \log P_3 \cdot \dots \cdot \log P_N$$

Quick Quiz

Given a **unigram** language model and the following two sentences S_1 and S_2

S₁: "alice saw the accident"

S₂: "the accident alice saw"

which sentence has the higher probability?

$$P(S_1) > P(S_2)$$

$$P(S_1) < P(S_2)$$

$$P(S_1) = P(S_2)$$

insufficient data

In-Lecture Activity (5 mins)

- Task: Calculate the Probability P(saw|alice) given the table of bigram counts below
 - Post your solution to Canvas > Discussions (individually or as a group; include all group members' names in the post)

5
5
15
20
25
1
2

Outline

Language Models

- Motivation
- Sentence Probabilities
- Markov Assumption
- Challenges

Smoothing

- Laplace Smoothing
- Backoff & Interpolation
- Kneser-Ney Smoothing
- Evaluating Language Models

Handling OOV Words — Closed vs. Open Vocabulary

- Closed vocabulary
 - All strings contain words from a fixed vocabulary
 - → No unknown words

- Open Vocabulary
 - Strings may contain words that are not in the vocabulary (oov words)
 - Examples: proper nouns, mismatching context
 - → Counts might be 0 (even for individual words and not just for long(er) sequences of words)

Movie review dataset — Unigram counts:

i	like	the	story	costner	einstein	planck	biden	integral	adverb	tensor	nlp
87,185	19,862	33,0867	11,094	67	20	0	0	27	0	0	0

Handling OOV Words — Alternatives

- Special token for OOV words
 - During normalization, replace all OVV words with a special token (e.g., <UNK>)
 - Estimate counts and probabilities for sequences involving <UNK> like for regular word
- Subword tokenization (e.g., with Byte-Pair Encoding)
 - Split texts into tokens smaller than words
 - Tokens are more likely to be frequent
- Smoothing

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - **■** Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Smoothing

- Basic idea
 - Avoid assigning probabilities of 0 to unseen n-grams
 - "Move" some probability mass from more frequent n-grams to unseen n-grams
 - Also called: discounting
- Basic method: Laplace Smoothing (also: Add-1 Smoothing)
 - Example for bigrams

	i	like	the	story
i	0	693	20	0
like	326	0	1,997	8
the	15	42	0	5,171
story	23	16	16	0

	i	like	the	story
i	1	69 <mark>4</mark>	21	1
like	32 <mark>7</mark>	1	1,998	9
the	1 <mark>6</mark>	43	1	5,17 <mark>2</mark>
story	24	1 <mark>7</mark>	1 <mark>7</mark>	1

Calculating the probabilities

$$P_{Laplace}(w_{n}|w_{1:n-1}) = \frac{Count_{Laplace}(w_{1:n-1}w_{n})}{\sum_{w} Count_{Laplace}(w_{1:n-1}w_{n})}$$

$$= \frac{Count(w_{1:n-1}w_{n}) + 1}{\sum_{w} [Count(w_{1:n-1}w_{n}) + 1]}$$

$$= \frac{Count(w_{1:n-1}w_{n}) + 1}{Count(w_{1:n-1}) + V}$$

e.g., for bigrams:
$$P_{Laplace}(w_n|w_{n-1}) = \frac{Count(w_{n-1}w_n) + 1}{Count(w_{n-1}) + V}$$

Effects of smoothing on probabilities

Bigram probabilities (without Laplace Smoothing):

	i	like	the	story
i	0.0	0.007949	0.000229	0.0
like	0.016413	0	0.100544	0.000403
the	0.000045	0.000127	0.0	0.015629
story	0.002073	0.001442	0.001442	0.0

Bigram probabilities (with Laplace Smoothing):

	i	like	the	story
i	0.000006	0.004075	0.000123	0.000006
like	0.003175	0.000010	0.019401	0.000087
the	0.000039	0.000104	0.000002	0.012493
story	0.000255	0.000180	0.000180	0.000011

Observations

- No zero probabilities (duh!)
- Some non-zero probabilities have changed quite a bit!
- → For some n-grams: (arguably) too much probability gets moved to zero probabilities

- Effects of smoothing on counts
 - Question: What counts without smoothing would yield $P_{Laplace}(w_i|w_{i-1})$?

$$P_{Laplace}(w_n|w_{n-1}) = \frac{Count(w_{n-1}w_n) + 1}{Count(w_{n-1}) + V} = \frac{Count^*(w_{n-1}w_n)}{Count(w_{n-1})}$$

Bigram counts (original):

	i	like	the	story
i	0	693	20	0
like	326	0	1,997	8
the	15	42	0	5,171
story	23	16	16	0

Bigram counts (adjusted):

	i	like	the	story
i	0.51	355.28	10.75	0.51
like	63.07	0.19	385.34	1.74
the	12.79	34.37	0.80	4133.5
story	2.83	2.00	2.00	0.12

- Laplace Discount
 - $lacktriangledown d_c$ ratio of adjusted counts to the original counts
 - Only defined where original counts > 1

$$d_c = \frac{Count^*(w_{n-1}w_n)}{Count(w_{n-1}w_n)}$$

Laplace discounts:

	i	like	the	story
i		0.51	0.54	
like	0.19		0.19	0.22
the	0.85	0.82		0.80
story	0.12	0.13	0.13	

Add-*k* Smoothing

- Generalize Laplace (Add-1) Smoothing
 - Add *k* instead of 1
 - Set $0 < k \le 1$

$$P_{add-k}(w_n|w_{n-1}) = \frac{Count(w_{n-1}w_n) + k}{Count(w_{n-1}) + kV}$$

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Backoff & Interpolation

- Intuition: Utilize less context if required
 - Assume we want to calculate $P(w_n|w_{n-2},w_{n-1})$ but trigram $w_{n-2}w_{n-1}w_n$ is not in the dataset

(1) Backoff

- Make use if bigram probability $P(w_n|w_{n-1})$
- lacktriangle If still insufficient, use unigram probability $P(w_n)$

(2) Interpolation

- Estimate $P(w_n|w_{n-2},w_{n-1})$ as a weighted mix of trigram, bigram, and unigram probabilities
- Learn weights λ_i from data
- In practice better than Backoff

Linear Interpolation (example for trigrams)

Simple interpolation

$$\hat{P}(w_n|w_{n-2}, w_{n-1}) = \lambda_1 P(w_n) + \lambda_2 P(w_n|w_{n-1}) + \text{ with } \sum_i \lambda_i = 1$$

$$\lambda_3 P(w_n|w_{n-2}, w_{n-1})$$

• λ_i conditional on context

$$\hat{P}(w_n|w_{n-2},w_{n-1}) = \lambda_1(w_{n-2},w_{n-1})P(w_n) + \lambda_2(w_{n-2},w_{n-1})P(w_n|w_{n-1}) + \lambda_3(w_{n-2},w_{n-1})P(w_n|w_{n-2},w_{n-1})$$

Backoff & Interpolation

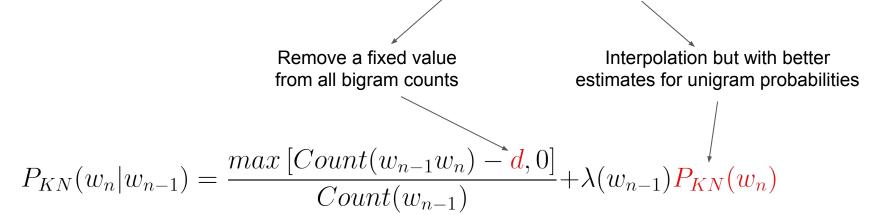
- ullet Learn weights λ_i from data basic idea
 - (1) Collect held-out corpus
 - Additional corpus or
 - Split from initial corpus
 - (2) Calculate all n-gram probabilities
 - Calculation must no consider held-out corpus!
 - (3) Find λ_i that maximize $\hat{P}(w_n|w_{n-2},w_{n-1})$ over held-out corpus
 - e.g., using Expectation-Maximization (EM) algorithm (not further discusses here)

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Kneser-Ney Smoothing

Idea of Kneser-Ney Smoothing: Absolute Discounting Interpolation



Note: We only look at a bigram language model in the following to keep the examples and notations easy. Kneser-Ney Smoothing analogously defined for larger n-grams.

Kneser-Ney Smoothing — **Absolute Discounting**

Absolute discounting

- Remove fixed value d from bigram counts (typically: 0 < d < 1)
- Makes probability mass for unigrams available
- Intuition

```
If Count(w_{n-1}w_n) is large, count hardly affected  \mbox{If } Count(w_{n-1}w_n) \mbox{ is small, count not that useful to begin with }
```

just a fail-safe to avoid negative probabilities $\frac{max \left[Count(w_{n-1}w_n) - \mathbf{d}, 0\right]}{Count(w_{n-1})}$

 \rightarrow Question: How to pick the value(s) for d?

Kneser-Ney Smoothing — **Absolute Discounting**

- Approach by Church and Gale (1991)
 - Compute bigram counts over large training corpus
 - Compute the counts of the same bigrams over a large test corpus
 - Compute the average count from the test corpus
 w.r.t. the count in the training corpus

On average, a bigram that occurred 5 times in the training corpus occurred 4.21 times in the test corpus

Bigram count in training corpus	Bigram count in test corpus	
0	0.000270	
1	0.448	
2	1.25	
3	2.24	
4	3.23	
5	4.21	
6	5.23	
7	6.21	
8	7.21	
9	8.26	

ightharpoonup Set d=0.75 (maybe a bit smaller for counts of 1 and 2)

Kneser-Ney Smoothing — Interpolation with a Twist

Motivation

$$P_{KN}(w_n|w_{n-1}) = \frac{max \left[Count(w_{n-1}w_n) - d, 0\right]}{Count(w_{n-1})} + \lambda(w_{n-1})P(w_n)$$

Using basic interpolation, that would just be the unigram probability

→ But is this actually a good idea?

"I can't see without my reading _____" $\begin{bmatrix} \dots \\ "glasses" \\ \dots \\ P("Hong Kong" is very frequen \\ P("Kong") > P("glasses") \\ \dots \\ "Kong" \end{bmatrix}$

Kneser-Ney Smoothing — **Interpolation with a Twist**

- The difference between "glasses" and "Kong" Intuition
 - "glasses" is preceded by many other words
 - "Kong" almost only preceded by "Hong"
 - $\rightarrow P(w) =$ "How likely is w?" maybe not most intuitive approach
- Alternative: $P_{KN}(w) =$ "How likely is w to appear as a novel continuation?"
 - $lacksquare P_{KN}(w)$ is high \Leftrightarrow there are $\underline{\mathsf{many words}}\,w'$ that form an existing bigram w'w
 - ullet $P_{KN}(w)$ is low \Leftrightarrow there are only few words w' that form an existing bigram w'w
 - → How can we quantify this?

Kneser-Ney Smoothing — Interpolation with a Twist

• Calculating $P_{KN}(w)$

#words
$$w'$$
 that form an existing bigram $w'w$
$$P_{KN}(w) = \frac{|\{w' \ : \ Count(w'w) > 0\}|}{|\{(u,v) : Count(uv) > 0\}|}$$
 total number of existing bigrams N

total number of existing bigrams $\text{normalization to ensure that } \sum_{n=1}^{N} P(w_n) = 1$

Kneser-Ney Smoothing — Wrapping it Up

$$P_{KN}(w_n|w_{n-1}) = \frac{max\left[Count(w_{n-1}w_n) - d, 0\right]}{Count(w_{n-1})} + \underbrace{\lambda(w_{n-1})}_{\text{last missing puzzle piece}} P_{KN}(w_n)$$

- Normalizing factor λ
 - Required to account for the probability mass we have discounted

$$\lambda(w_{n-1}) = \underbrace{\frac{d}{Count(w_{n-1})}}_{\text{normalized discount}} \cdot \underbrace{|\{w': Count(w_{n-1}w') > 0\}|}_{\text{#words that can follow discounted}}$$

#times the normalized discount has been applied

In-Lecture Activity (5 mins)

- Task: find 5+ words where you would expect that $P_{KN}(w) < P(w)$
 - Post your solutions to Canvas > Discussions (individually or as a group; include all group members' names in the post)
 - We already used "Kong" as an example, so try to avoid "Francisco", "Angeles", "Aires", etc. :)
 - Optional: Think about how the context matters (e.g., travel blogs vs. movie reviews)

Outline

- Language Models
 - Motivation
 - Sentence Probabilities
 - Markov Assumption
 - Challenges
- Smoothing
 - Laplace Smoothing
 - Backoff & Interpolation
 - Kneser-Ney Smoothing
- Evaluating Language Models

Evaluating Language Models

- A Language Model (LM) is considered good if
 - It assigns high probabilities to frequently occurring sentences
 - It assigns low probabilities to rarely occurring sentences
- 2 basic approaches to compare LMs

Extrinsic Evaluation

- Requires a downstream task (e.g., spell checker, speech recognition)
- Run downstream task with each
 LM and compare the results
- Can be very expensive & time-consuming

Intrinsic Evaluation

- Evaluate each LM on a test corpus
- Generally cheaper & faster
- Require intrinsic metric to compare LMs
 - → Perplexity (among other metrics)

Intrinsic Evaluation

- 3 core steps for an intrinsic evaluation
 - (1) Train LM on a **training corpus** (i.e., compute the n-gram probabilities)
 - (2) Tune parameters of LM using a **development corpus** (e.g., *k* in case of Add-*k* Smoothing)
 - (3) Compute evaluation metric on **test corpus** (e.g., perplexity)

Common corpus breakdown: 80/10/10 (80% training, 10% development, 10% test)

Perplexity

- Perplexity Definition
 - lacktriangleright Inverse probability of test corpus W
 - $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} Normalized by the number of words N \\ in test corpus \end{tabular}$

$$PP(W) = P(w_1, w_2, \dots, w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1, w_2, \dots, w_N)}}$$

chain rule:
$$= \sqrt[N]{\prod_{n=1}^{N} \frac{1}{P(w_n|w_1,\ldots,w_{n-1})}}$$

e.g., for bigrams:
$$= \sqrt[N]{\prod_{n=1}^{N} \frac{1}{P(w_n|w_{n-1})}}$$

Perplexity — Intuition

When is the perplexity high?

Many n-grams are <u>frequent</u> in the training corpus but <u>rare</u> in the test corpus

Very few high $P(w_n|w_{n-1})$ values over test corpus

High perplexity
$$PP(W) = \sqrt[N]{\prod_{n=1}^{N} \frac{1}{P(w_n|w_{n-1})}}$$

Many n-grams are <u>rare</u> in the training corpus but <u>frequent</u> in the test corpus

Many low $P(w_n|w_{n-1})$ values over test corpus

Perplexity — Practical Consideration

- In general
 - Each $P(w_n|w_{1:n-1})$ rather small $\rightarrow \prod_{n=1}^{\infty} P(w_n|w_{1:n-1})$ very small
 - Risk of arithmetic underflow
- Again, logarithm to the rescue

$$PP(W) = e^{\ln PP(W)}$$

$$\ln PP(W) = -\frac{1}{N} \ln P(w_1, w_2, \dots, w_N)$$

$$= -\frac{1}{N} \ln \prod_{n=1}^{N} \frac{1}{P(w_n | w_1, \dots, w_{n-1})}$$

$$= -\frac{1}{N} \sum_{n=1}^{N} \ln P(w_n | w_1, \dots, w_{n-1})$$

e.g., for bigrams:
$$= -\frac{1}{N} \sum_{n=1}^{N} \ln P(w_n | w_{n-1})$$

Perplexity — Toy Example

- Evaluation setup
 - Bigram LM trained over 25k movie reviews
 - Small test corpus W with N=12

$$W = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ \end{bmatrix}$$
 "\langle s\rangle i like good movies \langle /s\rangle",
"\langle s\rangle the story is funny \langle /s\rangle"
]

$$PP(W) = \sqrt[N]{\prod_{n=1}^{N} \frac{1}{P(w_n|w_{n-1})}} = 40.1$$

bigram	P(bigram)	
" <s> i"</s>	0.0882	
"i like"	0.0079	
"like good"	0.0013	
"good movies"	0.0062	
"movies "	0.0034	
" <s> the"</s>	0.0990	
"the story"	0.0156	
"story is"	0.1138	
"is funny"	0.0022	
"funny "	0.0081	

Perplexity — Real-World Example

- Evaluation setup
 - Unigram, Bigram, Trigram LMs trained over *Wall Street Journal* articles
 - Training corpus: ~38 million words (~20k unique words)
 - Test corpus: ~1.5 million words

	Unigram	Bigram	Trigram
Perplexity	962	170	109

Quick Quiz

What are the (minimum, maximum) possible values for perplexity?

B (1, ∞)

C (0, V)

(1, V)

v = size of vocabulary

Summary

- Language Models assigning probabilities to sentences
 - Very important concept for many NLP tasks
 - Different methods to compute sentence probabilities (here: n-grams; later we come back to them using neural networks)
- n-gram Language Models
 - Intuitive training → Maximum Likelihood Estimations
 - Main consideration: zero probabilities due to large n-grams and/or open vocabularies

Markov Assumption to limited size of considered n-grams

Focus here: **Smoothing** (maybe with backoff & interpolation)

In practice, typically a combination of these and similar approaches

Pre-Lecture Activity for Next Week

- Assigned Task
 - Post a 1-2 sentence answer to the following question into the L2 Discussion on Canvas

"When we want to evaluate classifiers, why is accuracy alone often not a good metric?"

Side notes:

- This task is meant as a warm-up to provide some context for the next lecture
- No worries if you get lost; we will talk about this in the next lecture
- You can just copy-&-paste others' answers but his won't help you learn better

Solutions to Quick Quizzes

- Slide 9: D
 - You can always find examples that violate all other answer options
 - Example: 6-sided die calculate P(2 | "odd") vs P(2 | "even")
- Slide 10
 - We sum all all counts for $w_{1:n}$ followed by any word w from the vocabulary
 - If $w_{1:n}w$ does not exist we add 0, so it does not "harm" the total count
- Slide 21:
 - P("<S>") is the same for sentences
 - Just for comparing the probabilities of 2 sentences, we don't need it
- Slide 23: D
 - The unigram language model does not care about word order
 - \blacksquare S_1 and S_2 are identical when we ignore the word order

Solutions to Quick Quizzes

- Slide 56
 - Minimum: 1 → All n-gram probabilities are 1
 - Maximum: ∞ → All n-gram probabilities are 0 (or go towards 0)