National University
of Singapore

NUS | Computing

Lecture 3

CS4248: Natural Language Processing

Lecture 3 — n-Gram Language Models

o)
=
(7))
N
[¢))
O
o
S
o
(<)
o)
©
=
o)
C
(1)
-
©
S
=
=)
©
Z
o)
<
AN
<
n
(&)

Outline

e Language Models
m Motivation
m Sentence Probabilities
m Markov Assumption
m Challenges

Lecture 3

e Smoothing
m Laplace Smoothing
m Backoff & Interpolation
m Kneser-Ney Smoothing

e Evaluating Language Models

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

Language Models — Motivation

e \Which sentence makes more sense? 87 or 82?

S,: "on guys all | of noticed sidewalk three a sudden standing the"
Example 1:
S, "all of a sudden | noticed three guys standing on the sidewalk”
S, "the role was played by an aeressacross famous for her comedic timing"
Example 2:
S, "the role was played by an aeressactress famous for her comedic timing"
e But why?

m Probability of S, higher than of S: P(S5) > P(S])

=» Language Models — Assigning probabilities to a sentence, phrase (or word)

Language Models — Basic ldea

e 2 basic notions of probabilities

(1) Probability of a sequence of words IV
P(W) = P(wy,wa,ws, ..., wp,)

example: (" remember to submit your assignment”)

(2) Probability of an upcoming word w,,
P(wn | w1, W, w3z, - - . 7wn—1)

Bample: (" assignment” | "remember to submit your”)

In this lecture: How to calculate these probabilities?

Language Models — Applications

e Language Models fundamental for many NLP task

m Speech Recognition P("we built this city on rock and roll”) > P("we built this city on sausage rolls”)

m Spelling correction P("... hasnomistakes”) > P(" ... has nomistaek”)

99
77

m Grammar correction P(”... hasimproved”) > P(" ... hasimprove”)

m Machine Translation P("[went home”) > P("I went to home”)

Outline

e Language Models
m Motivation
m Sentence Probabilities
m Markov Assumption
m Challenges

Lecture 3

e Smoothing
m Laplace Smoothing
m Backoff & Interpolation
m Kneser-Ney Smoothing

e Evaluating Language Models

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

PI‘Obabi"tiBS Of SBH’[BHGBS (more generally: sequence of words)

P("remember to submit your assignment”)

=» How to calculate those probabilities?
P("assignment” | " remember to submit your”)

e Quick review: Chain Rule (allows the iterative calculation of joint probabilities)

m Chain rule for 2 random events: P(A;, Ay) = P(As]Ay) - P(Ay)

m Chain rule for 3 random events: P(A1, Ay, A3) = P(As|Aq, Ag) - P(Aq, Ag)
= P(A3|A1, Ag) - P(Ag|Ay) - P(Ay)

Probabilities of Sentences

e Chain rule — generalization to N random events

P(Ay,...,Ay) = P(Ay) - P(Ag]Ay) - P(Ag[A1.2) -+ P(AN|AL. N—1)

N

P(AZ“AL @'_1> 1:J — sequence notations

—.

1

~.
I

=» Chain rule applied to sequences of words

Plwy,...,wy) = P(wy) - Pwa|wy) - P(wz|wy. 2) - ... Plwylwy. y_1)
N

= [Plwilwy . i-1)

1=1

Quick Quiz

A [P(A,)>P(A|A,) }

Given two random events A1 and A2 with B [P(A,) <P(A,|A,) }

known probabilities P(A,) and P(A,), which

statement on the right is always correct?
C [P(A))=P(A[|A)) }
D [none of the above }

Probabilities of Sentences

e Calculating the probabilities using Maximum Likelihood Estimations

P(w |w)_ Count(wl:n—lwn> B Count(wlzn)
n|Wl:in—-1) — Zw COUTLt(wl:n—lw)) OOunt(wltn—l)

Assuming w1 . ,_1 is part for the n-gram
(i.e., it must be followed by a word)

Quick quiz: Why does the
denominator simplify like this?

10

Probabilities of Sentences — Example

(1) Application of Chain Rule

P("remember to submit your assignment”) =

(2) Maximum Likelihood Estimation

Count (" remember”)
N

P("remember”) =

Count("remember to”)

P 77t 2 n b 7 — _
(20 ["remember”) Count("remember”)

P("assignment” | " remember to submit your”) =

7

P("remember”) -

(7
("to” |7 remember) -

(7 " | "remember to”) -
(7

(

7

P
P
P("your” | "remember to submit”) -
P

WM

assignment” | "remember to submit your”)

Do you see any problems?

Count("remember to submit your assignment”)

Count("remember to submit your”)

11

Probabilities of Sentences — Problems

Count("remember to submit your assignment”)

P("assignment” | "remember to submit your”) = Count("remember to submit gour”)

e Problem: (very) long sequences
m Large number of entries in table with joint probabilities

m A sequence (or subsequence) (I

N
i+q)] — P n Cn— —
may not be present in corpus } > Count(wi;j) =0 - H (wn|wi: 1) =0

n=1

(we can ignore % here; this can be handled in the implementation)

=» Can we keep the sequences short?

12

Outline

e Language Models
m Motivation
m Sentence Probabilities
m Markov Assumption
m Challenges

Lecture 3

e Smoothing
m Laplace Smoothing
m Backoff & Interpolation
m Kneser-Ney Smoothing

e Evaluating Language Models

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

13

Markov Assumption

e Probabilities depend on only on the last £ words

N N
P(wl,...,wN) = HP(wn|w1;n_1) = Hp(wnlwvz—k:n—l)
n=1 n=1

e For our example:
P("assignment” | "remember to submit your”) ~ P("assignment” | "your”)
P("assignment” | 7 submit your”)

P("assignment” | "to submit your”)

14

n-GI‘am MOdEIS (consider the only n-7last words)

Unigram (1-gram): P(wy|wi. ,—1) = P(wp)

Bigram (2-gram):

Trigram (3-gram):

P(wn‘wlz n—l) ~ P(wn’wn—ﬁ

P(wp|wy. p—1) = P(wp|wy—9, w,_1)

15

n-Gram Models

Maximum Likelihood Estimation

. Count(w
Unigram (1-gram): P(wp|wi. 1) = P(wy) P(wy) = #T?ii:)
. _ Count(wy_1wy)
Bigram (2-gram): P(wp|wy. p—1) = P(wp|w,_1) P(wp|wy,_1) =

Count(wy_1)

. Count(w,, _ow,, 1w
Trigram (3-gram). P(wp|wy. p—1) & P(wp|wy—2,wp—1) Plwplwp—1, wy—2) = (Wn—9Wn—1t0n)

Count(wy,_owy,_1)

Count(wy,—N41:4)

General MLE for n-grams: P(wi|wn—N+1¢”_1):Count(w N+1:n-1)
n—N+1:n—

e n-Gram models in practice
m 3-gram, 4-gram, 5-gram models very common

m The larger the n-grams, the more data required
16

n-Gram Models — Bigram Example

Example corpus with 3 sentences

<s> | am Sam </s> . . Count("<s> I7)
P(I < S > > — 29 29 —
<s> Sam | am </s> COU?”Lt(<85>)

<s> | do not like green eggs and ham </s>

Count("I am”)
Count("I")

P(J?am77 |77]77) —

Count("am Sam”)
Count("am”)

P(?JSamﬂ 7 am??) —

Count(”Sam < /s>7)
Count(”Sam”) B

P(?? </S>77|77Sam77) —

17

n-Gram Models — Bigram Example

Example corpus with 3 sentences

<s>| am Sam </s>

<s> Sam | am </s>

<s> | do not like green eggs and ham </s>

Count("<s> I") 2
P 7 [7? 7 < >77 — -
(5>7) Count(” <s>") 3
Count("I am”) 2
P 7 7| [77 — — _
(am) Count("I") 3
C t 7 S W
P(?? Sam” 7 am”) — Oun (a{';';z C’L’m) — _
Count(”am”) 2

P(77</S>77‘77Sam)7> —

Count(”Sam < /s>")

1

Count(”Sam”)

1
9

18

n-Gram Models — Bigram Example (5000 movie Reviews
P(” <s> i like the story </s>") =777

Unigram counts:

o Jme @ femy |

87,185 19,862 33,0867 11,094

Bigram counts:

20 0
1,997 8
148 5171
16 0

19

n-Gram Models — Bigram Example (5000 movie Reviews

P(” <s> i like the story </s>") =777

Unigram counts:

.
o Jme @ fey |

87,185 19,862 33,0867 11,094 Bigram probabilities:

_mm

0.007949 | 0.000229
0.016413 | O 0.100544 | 0.000403

m 0.000045 | 0.000127 | 0.0 0.015629
0.002073 | 0.001442 | 0.001442 | 0.0

Bigram counts:

Example calculation:

(77[,1/]{/,677 |77 77) —

Count ("1 like”) 693

= = 0.007949
Count(”i”) 87185

20

n-Gram Models — Bigram Example (5000 movie Reviews

Bigram probabilities:

0.007949 | 0.000229
0.016413 | 0.0 0.100544
0.000045 | 0.000127 | 0.0
Syl 0.002073 | 0.001442 | 0.001442

Not in the table:
P(i"|" <s>") = 0.088198
P(" < /s>"]"story”) = 0.001262

Quick quiz: Why don't we
need P("<s>")?

-_mm

0.000403
0.015629
0.0

P("<s> ilike the story </s>")=

P("<s> ilike the story </s>")=

P("<s> ilike the story </s>")=

P(it]"<s>") -
P("like’|"17) -
P("the”|"like") -
P("story”|"the”) -
P("</s>"|"story”)

0.088198 -
0.007949 -
0.100544 -
0.015629 -
0.001262

0.00000000139

21

n-Gram Models — Practical Consideration

e |n general N

m Each P(wp|w;. 1) rather small = H P(wp|wy. n—1) very small

=1
m Risk of arithmetic underflow !

=» Always use an equivalent logarithmic format
m Logarithm is a strictly monotonic function

P1P2P3PNOCIOg<P1P2P3PN)
= log P; + log P» + log P;

-...logPN

22

Quick Quiz

Given a unigram language model and
the following two sentences S, and S,

S /- "alice saw the accident"

S2: "the accident alice saw"

which sentence has the
higher probability?

P(S,) > P(S,) }

P(S,) <P(S,) }

P(S,) =P(S)) 1

insufficient data }

23

In-Lecture Activity (5 mins)

e Task: Calculate the Probability P(saw]|alice)

given the table of bigram counts below

m Post your solution to Canvas > Discussions
(individually or as a group; include all group members' names in the post)

alice accident
saw alice
alice the

alice saw
saw the
accident saw

accident alice

5

15

20
25

24

Outline

e Language Models
m Motivation
m Sentence Probabilities
m Markov Assumption
m Challenges

Lecture 3

e Smoothing
m Laplace Smoothing
m Backoff & Interpolation
m Kneser-Ney Smoothing

e Evaluating Language Models

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

25

Handling 00V Words — Closed vs. Open Vocabulary

e Closed vocabulary
m All strings contain words from a fixed vocabulary

=» No unknown words

e Open Vocabulary
m Strings may contain words that are not in the vocabulary (oov words)

m Examples: proper nouns, mismatching context

= Counts might be 0 (even for individual words and not just for long(er) sequences of words)

Movie review dataset — Unigram counts:

_mmmmmmmmm

87,185 19,862 33,0867 | 11,094

26

Handling 00V Words — Alternatives

e Special token for OOV words

m During normalization, replace all OVV words with a special token (e.g., <UNK>)

m Estimate counts and probabilities for sequences involving <UNK> like for regular word

e Subword tokenization (e.g., with Byte-Pair Encoding)
m Split texts into tokens smaller than words

m Tokens are more likely to be frequent

e Smoothing

27

Outline

e |Language Models
m Motivation
m Sentence Probabilities
m Markov Assumption
m Challenges

Lecture 3

e Smoothing
m Laplace Smoothing
m Backoff & Interpolation
m Kneser-Ney Smoothing

e Evaluating Language Models

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

28

Smoothing

e Basic idea

m Avoid assigning probabilities of 0 to unseen n-grams

m "Move" some probability mass from more frequent n-grams to unseen n-grams

m Also called: discounting

e Basic method: Laplace Smoothing (iso: Add-1 smoothing)
m Example for bigrams

29

Smoothing — Laplace Smoothing

e Calculating the probabilities

Count [, gpiaee(W1:n—1wn)
PLaplace<wn‘w1:n—1) — P

B Zw CountLaplace(wl n—1W)

_ Count(wy.p—qjwy) + 1
N > w [Count(wy. p—w) + 1]

~ Count(wy. p—qwp) + 1
- Count(wy. 1) +V

Count(wy—1wp) + 1
Count(w,_1)+V

e.g., for bigrams: PLaplace(wn|wn—1> =

30

Smoothing — Laplace Smoothing

e Effects of smoothing on probabilities

Bigram probabilities (without Laplace Smoothing): Bigram probabilities (with Laplace Smoothing):

MI I N R

0.007949 | 0.000229 0.004075 | 0.000123 | 0.000006
0.016413 | O 0.100544 | 0.000403 0.000010 | 0.019401 | 0.000087

m 0.000045 | 0.000127 | 0.0 0.015629 0.000039 | 0.000104 | 0.000002 | 0.012493
0.002073 | 0.001442 | 0.001442 | 0.0 0.000255 | 0.000180 | 0.000180 | 0.000011

e Observations
m No zero probabilities (duh!)

m Some non-zero probabilities have changed quite a bit!

=» For some n-grams: (arguably) too much probability gets moved to zero probabilities

31

Smoothing — Laplace Smoothing

e Effects of smoothing on counts
m Question: What counts — without smoothing — would yield Prapiace(w;|w;—1) ?

Count(w,—yw,) +1 Count™(w,_jw,)
Count(w,_1) +V Count(w,_1)

PLaplace (wn ’ U}n_l) -

Count(w,_1)

=< Count” (wn—1wn> — (Count(wn_1wn> T 1> ' Count(w 1) +V

Bigram counts (original): Bigram counts (adjusted):

2.83

32

Smoothing — Laplace Smoothing

e Laplace Discount
m (. — ratio of adjusted counts to the original counts

m Only defined where original counts > 1

Laplace discounts:

~ Count™(wy,—1wn)

— Count(w,_1wy,)

33

Add-k Smoothing

e Generalize Laplace (Add-1) Smoothing
m Add k instead of 1

m Set 0 <k <1

P Count(wy_1wy) + k

add-+(WnlWn—1) = Count(wy,_1) + kV

34

Outline

e |Language Models
m Motivation
m Sentence Probabilities
m Markov Assumption
m Challenges

Lecture 3

e Smoothing

m Laplace Smoothing
m Backoff & Interpolation
m Kneser-Ney Smoothing

e Evaluating Language Models

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

35

Backoff & Interpolation

e [ntuition: Utilize less context if required

m Assume we want to calculate P(wy,|w,_2,w,_1) but trigram w,,_ow,, 1wy, is not in the dataset

(1) Backoff
m Make use if bigram probability P(wy,|w,_1)

m If still insufficient, use unigram probability P(wy,)

(2) Interpolation

m Estimate P(wy,|w, 2, w,_1) as a weighted mix
of trigram, bigram, and unigram probabilities

m Learn weights \; from data

m In practice better than Backoff

36

Llneal’ |nterp0|atI0n (example for trigrams)

e Simple interpolation

N

P(wn‘wn—% wn—l) =)\1P<wn) +

Mo P(wn|wn_1) + with Y A;

A3 P (wn |wy 2, wy 1)

e), conditional on context
P(wp|wy—2, wn—1) = A (wWp—2, wp_1)P(wy) +
Ao (W —2, Wy —1) P(wp|wp—1) +
P

)\3<wn—27 wn—l) (wn‘wn—% wn—l)

1

37

Backoff & Interpolation
e Learn weights \; from data — basic idea

(1) Collect held-out corpus
m Additional corpus or

m Split from initial corpus

(2) Calculate all n-gram probabilities
m Calculation must no consider held-out corpus!

(3) Find \; that maximize P(wy|w,,_2, w,_1) over held-out corpus
m e.g., using Expectation-Maximization (EM) algorithm (not further discusses here)

38

Outline

e |Language Models
m Motivation
m Sentence Probabilities
m Markov Assumption
m Challenges

Lecture 3

e Smoothing
m Laplace Smoothing
m Backoff & Interpolation
m Kneser-Ney Smoothing

e Evaluating Language Models

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

39

Kneser-Ney Smoothing

e |dea of Kneser-Ney Smoothing: Absolute Discounting Interpolation

/

Remove a fixed value
from all bigram counts

S

~ max [Count(w,_wy,) — d, 0]

Pren(wnlwn-1) = Count(w,_1)

Note: We only look at a bigram language model in the following to keep the examples
and notations easy. Kneser-Ney Smoothing analogously defined for larger n-grams.

N\

Interpolation but with better

estimates for unigram probabilities

/

+ X (wp—1) Prn(wy,)

40

Kneser-Ney Smoothing — Absolute Discounting

e Absolute discounting

m Remove fixed value (from bigram counts
(typically: 0 < d < 1)

m Makes probability mass for unigrams available just a fail-safe to avoid
negative probabilities
m [Intuition
If Count(w,_1wy,) is large, count hardly affected max [Count(wn_lwn) _ d) 0]
If Count(w,_1wy) is small, count not that useful to begin with
(Wn—1n) 9 Count(wy,_1)

-» Question: How to pick the value(s) for d ?

41

Kneser-Ney Smoothing — Absolute Discounting

e Approach by Church and Gale (1991)
m Compute bigram counts over large training corpus Uil et & OB GELE

. 0 0.000270
m Compute the counts of the same bigrams over a 1 0.448
large test corpus '

2 1.25

m Compute the average count from the test corpus 3 224
w.r.t. the count in the training corpus 4 393

5 4.21

el

On average, a bigram that occurred 5 times in the 6 523

training corpus occurred 4.21 times in the test corpus 7 6.21

8 7.21

9 8.26

=*» Set d =0.75 (maybe a bit smaller for counts of 1 and 2)

Source: A comparison of the enhanced Good-Turing and deleted estimation methods for estimating probabilities of English bigrams
(Church and Gale, 1991)

https://www.sciencedirect.com/science/article/abs/pii/088523089190016J

Kneser-Ney Smoothing — Interpolation with a Twist

e Motivation
mazx [Count(w,_1w,) — d, 0]

PKN(wn|wn—1) — +)\(wn—1)P(wn)

Count(w,_1)

Using basic interpolation, that would just be the unigram probability

=» But is this actually a good idea?

Predict the missing word: "g/asses"
If "Hong Kong" is very frequent:
"I can’t see without my reading S P("Kong”) > P("glasses”)

"Kong"

43

Kneser-Ney Smoothing — Interpolation with a Twist
e The difference between "glasses” and "Kong" — Intuition

m "glasses”is preceded by many other words

m "Kong" almost only preceded by "Hong"

= P(w) = "How likely is w ?" maybe not most intuitive approach

e Alternative: Py n(w) = "How likely is w to appear as a novel continuation?"

m Py y(w) is high < there are many words w' that form an existing bigram w'w

m Pry(w) is low © there are only few words w' that form an existing bigram w'w

=» How can we quantify this?

44

Kneser-Ney Smoothing — Interpolation with a Twist

e Calculating P W
9 Prn(w) #words 10’ that form an

existing bigram w’w

_ H{w" : Count(w'w) > 0}
{(u,v) : Count(uv) > 0}

Pg n(w)

total number of existing bigrams N

normalization to ensure that Z P(wy) =1

n=1

45

Kneser-Ney Smoothing — Wrapping it Up

max |Count(w,_qw,) — d,0
(Countlw,1wn) =& 00\)Py ()
Count(w,_1) \ ,

last missing puzzle piece

Py n(wp|w,—1) =

e Normalizing factor \
m Required to account for the probability mass we have discounted

d

Mwy—1) = Comntlw, 1) {w' : Count(w,_1w") > 0}
N ~ " J U ~ J
normalized #words that can follow

discount

#words that have been discounted

#times the normalized discount has been applied

46

In-Lecture Activity (5 mins)

e Task: find 5+ words where you would expect that Pr n(w) < P(w)

m Post your solutions to Canvas > Discussions
(individually or as a group; include all group members' names in the post)

m We already used "Kong" as an example, so try to avoid "Francisco", "Angeles", "Aires", etc. :)

m Optional: Think about how the context matters (e.g., travel blogs vs. movie reviews)

47

Outline

e |Language Models
m Motivation
m Sentence Probabilities
m Markov Assumption
m Challenges

Lecture 3

e Smoothing
m Laplace Smoothing
m Backoff & Interpolation
m Kneser-Ney Smoothing

e Evaluating Language Models

o)
=
(7))
N
(V]
O
o
S
o
(<)
o)
©
=
o)
c
(1)
-
©
S
=
=)
©
Z
0
<
AN
<
n
(&)

48

Evaluating Language Models

e A Language Model (LM) is considered good if

m It assigns high probabilities to frequently occurring sentences

m It assigns low probabilities to rarely occurring sentences

e 2 basic approaches to compare LMs

Extrinsic Evaluation Intrinsic Evaluation

e Requires a downstream task e Evaluate each LM on a test corpus

(e.g., spell checker, speech recognition)
e Generally cheaper & faster
e Run downstream task with each
LM and compare the results e Require intrinsic metric to compare LMs

e Can be very expensive & time-consuming =¥ Perplexity (among other metrics)

49

Intrinsic Evaluation

e 3 core steps for an intrinsic evaluation

(1) Train LM on a training corpus
(i.e., compute the n-gram probabilities)

(2) Tune parameters of LM using a development corpus
(e.g., kin case of Add-k Smoothing)

(3) Compute evaluation metric on test corpus
(e.g., perplexity)

e Common corpus breakdown: 80/10/10 (s0% training, 10% development, 10% test)

50

Perplexity

e Perplexity — Definition
m Inverse probability of test corpus W

m Normalized by the number of words N
in test corpus

Minimizing perplexity ¢ Maximizing probability

chain rule:

e.g., for bigrams:

51

Perplexity — Intuition

e When is the perplexity high?

Many n-grams are frequent in the Many n-grams are rare in the training
training corpus but rare in the test corpus corpus but frequent in the test corpus
Very few high P(wy|w,_1) values over test corpus Many low P(wy,|w,_1) values over test corpus

W 4

N
. H 1
High perplexity PP(W) =]d 11 Plwpluwn—1)
n|Wn—1

n=1

52

Perplexity — Practical Consideration

e |n general N
m Each P(wp|w;. 1) rather small = H P(wp|wy. n—1) very small
n=1

m Risk of arithmetic underflow

. . 1
e Again, logarithm to the rescue I PP(W) = =5 In P(wy, wy, ..., wy)

e.g., for bigrams:

.....

53

Perplexity — Toy Example

e Evaluation setup
m Bigram LM trained over 25k movie reviews

m Small test corpus T/ with N = 12
W=

7(s) i like good movies (/s)”,
'/7<

s) the story is funny (/s)”

Caram " plram

neg> in
"i like"

"like good"

"good movies"

"movies </s>"

"<s> the"

"the story"
"story is"
"is funny"

"funny </s>"

0.0882
0.0079
0.0013
0.0062
0.0034
0.0990
0.0156
0.1138
0.0022
0.0081

54

Perplexity — Real-World Example

e Evaluation setup

m Unigram, Bigram, Trigram LMs trained over Wall Street Journal articles

m Training corpus: ~38 million words (~20k unique words)

m Test corpus: ~1.5 million words

BT

Perplexity

Source: hitps://web.stanford.edu/~jurafsky/slp3/3.pdf

55

https://web.stanford.edu/~jurafsky/slp3/3.pdf

Quick Quiz

What are the (minimum, maximum)
possible values for perplexity?

A e

B

C [o

» S

v = size of vocabulary

56

Summary

e |Language Models — assigning probabilities to sentences
m Very important concept for many NLP tasks

m Different methods to compute sentence probabilities
(here: n-grams; later we come back to them using neural networks)

e n-gram Language Models
m Intuitive training =% Maximum Likelihood Estimations

m Main consideration: zero probabilities due to
large n-grams and/or open vocabularies

/ N\

Markov Assumption to limited Focus here: Smoothing
size of considered n-grams (maybe with backoff & interpolation)

In practice, typically a combination
of these and similar approaches

57

Pre-Lecture Activity for Next Week

e Assigned Task

m Post a 1-2 sentence answer to the following question into the L2 Discussion on Canvas

"When we want to evaluate classifiers,
why is accuracy alone often not a good metric?"

Side notes:
e This task is meant as a warm-up to provide some context for the next lecture
e No worries if you get lost; we will talk about this in the next lecture
e You can just copy-&-paste others' answers but his won't help you learn better

58

Solutions to Quick Quizzes

Slide 9: D

m You can always find examples that violate all other answer options

m Example: 6-sided die — calculate P(2 | "odd") vs P(2 | "even"

Slide 10

m We sum all all counts for w. . followed by any word w from the vocabulary

m If w, W does not exist we add 0, so it does not "harm" the total count

Slide 21:

m P("<S>") is the same for sentences

m Just for comparing the probabilities of 2 sentences, we don't need it

Slide 23: D

m The unigram language model does not care about word order

m S, and S, are identical when we ignore the word order

59

Solutions to Quick Quizzes

e Slide 56

m Minimum: 1 =» All n-gram probabilities are 1

m Maximum: < =» All n-gram probabilities are O (or go towards 0)

60

