
CS4248: Natural Language Processing

Lecture 2 — Strings & Words

C
S

42
48

 N
at

u
ra

l L
an

g
u

ag
e

P
ro

ce
ss

in
g

 —
 L

ec
tu

re
 2

Recap of Week 01

2

Student Learning Outcomes

Outline

3

● Regular Expressions
■ Basic Concepts
■ Relationship to FSA
■ Error Types

● Corpus Preprocessing
■ Tokenization
■ Normalization
■ Stemming / Lemmatization
■ Segmentation

● Word error handling
■ Spelling Errors
■ Minimum Edit Distance
■ Noisy Channel Model

C
S

42
48

 N
at

u
ra

l L
an

g
u

ag
e

P
ro

ce
ss

in
g

 —
 L

ec
tu

re
 2

Regular Expressions
● Regular Expression — Definition

■ Search pattern used to match character combinations in a string

■ Pattern = sequence of characters

● Common applications
■ Parse text documents to find specific character patterns

■ Validate text to ensure it matches predefined patterns

■ Extract, edit, replace, delete substrings matching a pattern

● Two basic search approaches
■ Default: match only first occurrence of pattern

■ Global search: match all occurrences of pattern (assumed in most following examples)

4

Example: password validation

Basic Patterns
● Fixed patterns

● Special characters (metacharacters)

5

floor ➜ My block has 15 floors, and I live on floor 5.

5 ➜ My block has 15 floors, and I live on floor 5.

blocks ➜ My block has 15 floors, and I live on floor 5.

Character Explanation

. matches any character except line breaks

^ match the start of a string

$ match the end of a string

| matches RegEx either before or after the symbol (e.g., floor|floors)

\b matches boundary between word and non-word

Character Classes
● Character class

■ Defines set of valid characters

■ Enclosed using "[...]"

■ Can be negated: "[^...]"

6

[0-9][0-9] ➜ My block has 15 floors, and I live on floor 5.

(match all sequences of 2 digits)

[.,;:] ➜ My block has 15 floors, and I live on floor 5.

(match all sequences of length 1 that are either a period, comma, etc.)

[^a-z] ➜ My block has 15 floors, and I live on floor 5.

(match all sequences of length 1 that are not a lowercase letter)

Predefined Character Classes
● Common character classes with their own shorthand notation (i.e., metacharacters)

7

Class Alternative Explanation

\d [0-9] matches any digit

\D [^0-9] matches any non-digit

\s [\n\r\t\f] matches any whitespace character

\S [^ \n\r\t\f] matches any non-whitespace character

\w [a-zA-Z0-9_] matches any word character

\W [^a-zA-Z0-9_] matches any non-word character

Repetition Patterns
● Very common: patterns with flexible lengths, e.g.:

■ All numbers with more than 2 digits

■ All words with less than 5 characters

● Repetition patterns — metacharacters

8

Pattern Explanation

+ 1 or more occurrences

* 0 or more occurrences

? 0 or 1 occurrences

{n} exactly n occurrences

{l,u} between l and u occurrences; can be unbounded: {l,} or {,u}

Repetition Patterns — Examples

9

\d{2,} ➜ My block has 15 floors, and I live on floor 5.

(match all numbers with 2 or more digits)

\d+ ➜ My block has 15 floors, and I live on floor 5.

(match all numbers with 1 or more digits)

\b\w{2,4}\b ➜ My block has 15 floors, and I live on floor 5.

(match words with 2 to 4 characters)

\b[Ff]loor[s]?\b ➜ My block has 15 floors, and I live on floor 5.

(match occurrences of "floor", either capitalized or not, either in singular or plural)

Groups
● Groups: Organizing patterns into parts

■ Groups are enclosed using "(...)"

■ While whole expression must match, groups are captures individually
(a match is no longer a string but a tuple of strings, on for each group)

■ Groups can be nested, e.g., (...(...)...((...))...)
(order of groups depends on the order in which the groups "open")

10

Send an email to alice@example.org for more information.

([\w.-]+)@([\w.-]+)

Match: user@example.org

Group #1: alice

Group #2: example.org

Match @-symbol

Match 1 or more letters, digits,
underscores, or periods

Quick quiz: In which case(s) would the RegEx
below fail to correctly match an email address?

Backreferences
● Reference groups within a RegEx

■ Find repeated patterns (see example below)

■ Support only partial replacement of matches

● Example:
■ "My mom said I need to pass this test."

■ Goal: Find all words that start and end with the same letter

11

(\b([a-zA-Z])\w*\2\b)

Match: mom

Group #1: mom

Group #2: m

Match: test

Group #1: test

Group #2: t

Quick quiz: Can the same be
achieved using only 1 group?

word boundary

1 letter
0..* letters, digits,
or underscores

Backreference to the 2nd group
(➜ must be the same letter)

Lookarounds
● Special groups — assertions

■ Match like any other group, but do not capture the match

■ 2 types: lookaheads and lookbehinds

■ 2 forms of assertion: positive and negative

12

Type Example

(?=) positive lookahead A(?=B) ➜ finds expr. A but only when followed by expr. B

(?!) negative lookahead A(?!B) ➜ finds expr. A but only when not followed by expr. B

(?<=) positive lookbehind (?<=B)A ➜ finds expr. A but only when preceded by expr. B

(?<!) negative lookbehind (?<!B)A ➜ finds expr. A but only when not preceded by expr. B

Lookarounds — Example
● Positive lookahead

■ "Paying 10 SGD for 1 kg of chicken seems fair."

■ Goal: Extract all kg values (numbers followed by the unit kg)

13

\d+(?=\s*kg)

[0-9.,]*[0-9]+(?=\s*kg)

"Paying 10 SGD for 1 kg of chicken seems fair.

"Paying 10 SGD for 1.5 kg of chicken seems fair.

"Paying 10 SGD for 1,500.00 kg of chicken seems fair.

"Paying 10 SGD for 1 kg of chicken seems fair.

"Paying 10 SGD for 1.5 kg of chicken seems fair.

"Paying 10 SGD for 1,500.00 kg of chicken seems fair.

➜

➜

Outline

14

● Regular Expressions
■ Basic Concepts
■ Relationship to FSA
■ Error Types

● Corpus Preprocessing
■ Tokenization
■ Normalization
■ Stemming / Lemmatization
■ Segmentation

● Word error handling
■ Spelling Errors
■ Minimum Edit Distance
■ Noisy Channel Model

C
S

42
48

 N
at

u
ra

l L
an

g
u

ag
e

P
ro

ce
ss

in
g

 —
 L

ec
tu

re
 2

Pre-Lecture Activity for Next Week
● Assigned Task (due before Jan 20)

■ Post a 1-2 sentence answer to the following question into the L1 Discussion forum
(you will find the thread on Canvas > Discussion > Week 2 (L1))

15

"What is the relationship between a Finite State Machine
and Regular Expressions?"

Side notes:
● This task is meant as a warm-up to provide some context for the next lecture
● No worries if you get lost; we will talk about this in the next lecture
● You can just copy-&-paste others' answers but this won't help you learn better

Pre-Lecture Activity from last week

16

Pre-Lecture Activity from last week

Relationship to Finite State Automata
● Equivalence

■ Regular Expressions describe Regular Languages
(most restricted types of languages w.r.t Chomsky Hierarchy)

■ Regular Language = language accepted by a FSA

17

Chomsky Hierarchy
(Source: Wikipedia)

{lol, loool, lolol, looolol, …}

l(o+l)+

Regular Language

Regular Expression

q
0

q
1

q
2

q
3

l o

o

o

l

Example: FSA that accepts the Regular Language
described by the Regular Expression l(o+l)+

Relationship to Finite State Automata
● Basic equivalences

18

q
0

q
1

q
2

q
0

q
1

q
0

q
1

q
0

a

ba

a

b

a

a

ab

a | b

a*

● Task: Find the RegEx describing the FSA below
■ Post your RegEx to Canvas > Discussions

(individually or as a group; include all group members' names in the post)

■ Optional: There is more than one correct answer ➜ Why?

🏃 In-Lecture Activity (5 mins)

19

In-Lecture Activity

Outline

20

● Regular Expressions
■ Basic Concepts
■ Relationship to FSA
■ Error Types

● Corpus Preprocessing
■ Tokenization
■ Normalization
■ Stemming / Lemmatization
■ Segmentation

● Word error handling
■ Spelling Errors
■ Minimum Edit Distance
■ Noisy Channel Model

C
S

42
48

 N
at

u
ra

l L
an

g
u

ag
e

P
ro

ce
ss

in
g

 —
 L

ec
tu

re
 2

Error Types — What Can Go Wrong
● Example: Find all occurrences of article "the"

■ Naive approach: "the" (fixed pattern)

21

There's no other way to learn the power of Regular Expressions
than to use them regularly. The productivity is worth the effort.

correct matchesincorrect matches

missing match

Quick quiz: What would be a
better RegEx for this task?

Error Types
● 2 basic types of errors

22

Matching strings that we should not have matched

(e.g., other, theology, weather, bathe, mother)

Not matching things that we should have matched

(e.g., THE)

False Positives
(Type I Errors)

False Negatives
(Type II Errors)

➜

➜

Error Types — Observations
● Many contexts deal with these 2 types of errors, e.g.:

■ Medical testing (e.g., ART test is positive but person is not infected with COVID ➜ false positive)

■ Information retrieval (e.g., a Web search is missing a relevant page ➜ false negative)

■ Document classification (e.g., an abusive tweet has be classified as positive ➜ false positive)

● Reducing errors
■ Both error types not always equally bad (infected person tests negative vs. healthy person test positive)

■ Reducing False Positives and False Negatives often in conflict
(reducing False Positives often increases False Negatives, and vice versa)

23

false negative false positive

Regular Expressions — Summary
● Know their powers

■ Extremely useful tool for many
(low-level) text processing tasks
(e.g., data preprocessing, tokenization, normalization)

■ Important skill for anyone
working with strings or text

● Know their limitations
■ Regular Expressions represent hard rules

■ Higher-level text processing task generally
require statistical models ("soft" rules)

24

➜ Machine Learning classifiers

Outline

25

● Regular Expressions
■ Basic Concepts
■ Relationship to FSA
■ Error Types

● Corpus Preprocessing
■ Tokenization
■ Normalization
■ Stemming / Lemmatization
■ Segmentation

● Word error handling
■ Spelling Errors
■ Minimum Edit Distance
■ Noisy Channel Model

C
S

42
48

 N
at

u
ra

l L
an

g
u

ag
e

P
ro

ce
ss

in
g

 —
 L

ec
tu

re
 2

Tokenization
● Tokenization: splitting a string into tokens ➜ vocabulary (set of all unique tokens)

■ Token = character sequence with a semantic meaning
(typically: words, numbers, punctuation — but may differ depending on applications)

■ Very important for step for most NLP algorithms
(tokenization errors quickly propagate up ➜ "garbage in, garbage out")

● 3 basic approaches

26

S h e ' s d r i v i n g f a s t e r t h a n a l l o w e d .

She 's driv ing fast er than allow ed .

driving faster than allowed .

character-
based

subword-
based

word-
based

Character-based tokenization
trivial (e.g., using Regex: .)

She 's

Tokenization — Word-Based
● 2 intuitive approaches (solved using RegEx)

■ Match all words, numbers and punctuation marks

■ Match boundaries between "words" and "non-words"

27

➜ \w+|\d+|[,.;:]

➜ (?=\W)|(?<=\W)

\w+|\d+|[,.;:] ➜ NLP is fun, and there is so much to learn in 13 weeks.

(?=\W)|(?<=\W) ➜ NLP is fun, and there is so much to learn in 13 weeks.

Quick quiz: What is an important
assumption for the 2 approaches?

Tokenization — It Quickly Gets Tricky

28

Multiword phrases ➜ I just came back from New York City.

Common contractions ➜ I'm not home, so don't call.

Hyphenations ➜ NLP is a well-defined but non-trivial topic.

Acronyms, names, etc. ➜ I watched a C++ documentary on T.V.

Special tokens ➜ My email is chris@nus.comp.nus.sg :o)

RegEx used:

\w+|\d+|[,.;:]

Example: spaCy Tokenizer

29
Source: https://spacy.io/usage/spacy-101

(1) Split string on whitespace characters

(2) From left to right, recursively check substrings:

● Does substring match an exception rule?
(e.g., "don't" ➝ "do", "n't", but keep "U.K.")

● Can a prefix, suffix or infix be split of?
(e.g., commas, periods, quotes, hyphens)

Substring checks based on
● Regular Expressions
● Hand-crafted rules / patterns

@ B o b . . . I # D u n e M o v i e : o)))

Example: Chris's Tokenizer

30

💗

@ B o b . . . I # D u n e M o v i e : o)))

💗

@ B o b . . . I # D u n e M o v i e : o)))
💗

@ B o b . . . I # D u n e M o v i e : o)))
💗

@ B o b . . . I # D u n e M o v i e : o)))
💗

Sequential labeling of characters

Label all whitespace characters

Label all unicode characters

Label all emoticons

Label all special token types

Label all punctuation marks

@ B o b . . . I # D u n e M o v i e : o)))
💗

Label all all alphanumeric characters

➜ Tokens = Substrings with adjacent characters with the same labels

Tokenization — Language Issues
● French

■ Different uses of apostrophes and hyphens (compared to English)

● German
■ Very common: compound nouns

31

l'ensemble donne-moi
"give me!""the whole" / "all"

indicates imperativedirect article

➜ 1 token or 2 tokens?

Arbeiterunfallversicherungsgesetz
"worker injury insurance act"

➜ important: compound splitter

Tokenization — Language Issues
● Languages without whitespaces separating words

32

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

莎 拉 波 娃 现 在 居 住 在 美 国 东 南 部 的 佛 罗 里 达Chinese

Japanese

● multiple syllabaries

● multiple formats for
dates and amounts

" Sharapova now lives in US southeastern Florida "

Katakana Hiragana Kanji Romanji

Tokenization — Word Segmentation of Chinese Text
● Baseline algorithm: Maximum Matching

33

莎拉波娃现在居住在美国东南部的佛罗里达
(1) Place a pointer at the

beginning of the string

(2) Find longest word in dictionary that
matches string starting the pointer

(3) Mover the pointer over
the word in the string

(4) Goto #2 to process the whole string

莎拉波娃现在居住在美国东南部的佛罗里达

莎拉波娃 现在居住在美国东南部的佛罗里达

莎拉波娃 现在居住在美国东南部的佛罗里达

Sharapova

now

Tokenization — Maximum Matching
● Surprisingly good performance on Chinese text

(even better performance with probabilistic methods or extensions)

● Generally does not work for English text

34

thetabledownthere

the table down there

theta bled own there

correct

Maximum Matching

Tokenization — Subword-Based
● Subword-based tokenization

■ So far: a priori specification of rules (e.g., RegEx) what constitutes valid tokens

■ Now: use data to specify how to tokenize

● Why do we want to do this?
■ Out Of Vocabulary (OOV) words

(word/token an NLP model has not seen before)

■ Very rare words in corpus

35

➜ problematic when building statistical models

➜ Goal: Split OOV and rare words into (some) known & frequent tokens

Obamacare kiasuism chillax

frequent tokens

Examples:

Tokenization — Subword-Based
● Different algorithms for subword tokenization

■ Byte-Pair Encoding (BPE), Unigram Language Model Tokenization, WordPiece, etc.

● Different approaches, similar 2-parts setup

36

(1) Token Learner
Takes raw training corpus and induces a vocabulary (i.e., set of tokens)

(2) Token Segmenter
Takes a raw text and tokenizes it according to vocabulary

Tokenization — BPE Token Learner

37

"low low low low low lower lower newest newest newest
newest newest newest widest widest widest longer"

Corpus:

Initialize vocabulary (e.g., {'d', 'e', 'g', 'i', 'l', 'n', 'o', 'r', 's', 't', 'w', '_'})

REPEAT

Find the 2 tokens most frequently adjacent to each other (e.g., 'e', 's')

Add a new merged token 'es' to vocabulary

Replace every adjacent 'e' 's' in corpus with 'es'

UNTIL k merges have been done

special end-of-word token

parameter of algorithm

Quick quiz: What happens
if k=0 or k=∞ ?

Tokenization — BPE Token Learner

38

6 n e w e s t _

5 l o w _

3 w i d e s t _

2 l o w e r _

1 l o n g e r _

corpus representation vocabulary

d, e, g, i, l, n, o, r, s, t, w, _

merges

6 n e w es t _

5 l o w _

3 w i d es t _

2 l o w e r _

1 l o n g e r _

corpus representation vocabulary

d, e, g, i, l, n, o, r, s, t, w, _, es

merges

(e, s)

most frequent pair: e & s (9 occurrences)

most frequent pair: es & t (9 occurrences)

Tokenization — BPE Token Learner

39

6 n e w est _

5 l o w _

3 w i d est _

2 l o w e r _

1 l o n g e r _

corpus representation vocabulary

d, e, g, i, l, n, o, r, s, t, w, _, es, est

merges

6 n e w est_

5 l o w _

3 w i d est_

2 l o w e r _

1 l o n g e r _

corpus representation vocabulary

d, e, g, i, l, n, o, r, s, t, w, _, es, est, est_

merges

(e, s), (es, t), (est, _)

most frequent pair: est & _ (9 occurrences)

most frequent pair: l & o (8 occurrences)

(e, s), (es, t)

Tokenization — BPE Token Learner

40

6 n e w est_

5 lo w _

3 w i d est_

2 lo w e r _

1 lo n g e r _

corpus representation vocabulary

d, e, g, i, l, n, o, r, s, t, w, _, es, est, est_, lo

merges

6 n e w est_

5 low _

3 w i d est_

2 low e r _

1 lo n g e r _

corpus representation vocabulary

d, e, g, i, l, n, o, r, s, t, w, _, es, est, est_, lo, low

merges

(e, s), (es, t), (est, _), (l, o), (lo, w)

most frequent pair: lo & w (7 occurrences)

most frequent pair: n & e (6 occurrences)

(e, s), (es, t), (est, _), (l, o)

Tokenization — BPE Token Learner

41

vocabulary d, e, g, i, l, n, o, r, s, t, w, _, es, est, est_, lo, low, ne

merges (e, s), (es, t), (est, _), (l, o), (lo, w), (n, e)

vocabulary d, e, g, i, l, n, o, r, s, t, w, _, es, est, est_, lo, low, ne, new

merges (e, s), (es, t), (est, _), (l, o), (lo, w), (n, e), (ne, w)

vocabulary d, e, g, i, l, n, o, r, s, t, w, _, es, est, est_, lo, low, ne, new, newest_

merges (e, s), (es, t), (est, _), (l, o), (lo, w), (n, e), (ne, w), (new, est_)

...

Tokenization — BPE Token Segmenter

42

vocabulary d, e, g, i, l, n, o, r, s, t, w, _, es, est, est_, lo, low, ne, new, newest_,
low_, er, er_, wi, wid, widest_, lower_, lon, long, longer_

merges (e, s), (es, t), (est, _), (l, o), (lo, w), (n, e), (ne, w), (new, est_), (low, _), (e, r),
(er, _), (w, i), (wi, d), (wid, est_), (low, er_), (lo, n), (lon, g), (long, er_)

Tokenize/segment

"newer"
n e w e r _

ne w e r _

new e r _

new er _

new er_

(n, e)

(ne, w)

(e, r)

(er, _)

Run each merge in order
they have been learned ➜ tokens: "new", "er_"

Tokenization — Summary
● Tokenization as low-level NLP task

■ Challenges: important, non-trivial, language-dependent

■ Particularly tricky for informal language (e.g., social media)

● 3 basic approaches
■ Character-based (trivial to do but often not suitable — individual characters generally carry no semantic meaning)

■ Word-based (a priori specification of rules; language-dependent; problem: OOV/rare words)

■ Subword-based (tokenization learned from data — tokens are often morphemes!)

● Practical consideration (when using off-the-shell word-based tokenizers)

■ What is my type of text (e.g., formal or informal)? Are there special tokens (e.g., URLs, hashtags)?

■ Try and assess different tokenizers — very, very last resort: write your own tokenizer
43

Outline

44

● Regular Expressions
■ Basic Concepts
■ Relationship to FSA
■ Error Types

● Corpus Preprocessing
■ Tokenization
■ Normalization
■ Stemming / Lemmatization
■ Segmentation

● Word error handling
■ Spelling Errors
■ Minimum Edit Distance
■ Noisy Channel Model

C
S

42
48

 N
at

u
ra

l L
an

g
u

ag
e

P
ro

ce
ss

in
g

 —
 L

ec
tu

re
 2

Normalization
● Goal: Convert text into a canonical (standard) form

■ Remove noise / "randomness" from text
■ Affects characters, words, sentences, documents

● Implicit definition of equivalence classes
■ Suitable normalization steps depend on task/application

45

Raw Normalized

Germany
GERMANY

germany

USA
U.S.A
US of A

USA

tonight
tonite
2N8

tonight

connect
connects
connected
connecting
connection

connect

:)
:-)
:o)

smile

Alternative to equivalence classes: asymmetric expansion

Example: Web Search (utilize case of search terms)

Entered term Searched terms

window ➜ window, windows

windows ➜ Windows, windows, window

Windows ➜ Windows

Normalization — Case Folding
● When to fold?

■ Common application: Information Retrieval
(e.g., Web search where must users type only in lowercase anyway)

■ Potential problems: Bush vs. bush, MOM vs. mom, Cloud vs. cloud, etc.
(potential exception: upper case word in mid sentence?)

● When NOT to fold?
■ NLP tasks where case of letters or words are important features

■ Examples: Named Entity Recognition, Machine Translation

46

They sent us a card from the US during their vacation.

Distinction important for NER and MT!

Outline

47

● Regular Expressions
■ Basic Concepts
■ Relationship to FSA
■ Error Types

● Corpus Preprocessing
■ Tokenization
■ Normalization
■ Stemming / Lemmatization
■ Segmentation

● Word error handling
■ Spelling Errors
■ Minimum Edit Distance
■ Noisy Channel Model

C
S

42
48

 N
at

u
ra

l L
an

g
u

ag
e

P
ro

ce
ss

in
g

 —
 L

ec
tu

re
 2

Normalization — Stemming & Lemmatization
● Motivating example:

● Common reasons for variations of the same word
■ Singular vs. plural form (mainly of nouns)

■ Different tenses of verbs

■ Comparative/superlative of adjectives

48

"dogs make the best friends" vs. "a dog makes a good friend"

➜ Very similar semantics but (very) different syntax

➜ Can we normalize words to abstract
 from such variations?

Normalization — Stemming
● Idea of Stemming

■ Reduce words to their stem

■ Approach: crude chopping of affixes
based on rules (➜ language dependent)

■ Different stemmers apply different rules

● Characteristics
■ Pro: fast + no lexicon required

■ Con: stemmed word not necessarily
a proper word (i.e., not in dictionary)

49

Raw Stemmed

cats cat

running run

phones phon(e)

presumably presum

crying cry/cri

went went

worse wors

best best

mice mic(e)

Examples
(alternatives reflect results from different stemmers)

Normalization — Stemming: Porter Stemmer
● Porter Stemmer — most common stemmer for English text

■ Simple, efficient + very good results in practice

● Series of rewrite rules that run in a cascade
■ Output of each pass is fed is input to the next pass

■ Stemming steps if a pass yields no more changes

50More details: https://tartarus.org/martin/PorterStemmer/

sses ➝ ss e.g.: possesses ➝ possess, classes ➝ class

tional ➝ tion e.g., optional ➝ option, fictional➝ function

ies ➝ i e.g., cries ➝ cri, tries ➝ tri

(*v*)ing ➝ ε e.g.: sing ➝ sing, singing ➝ sing, talking ➝ talk

(m>1)ement ➝ ε e.g., replacement ➝ replac, cement ➝ cement

stem must contain vowel

stem must contain >1 chars

Normalization — Lemmatization
● Idea of Lemmatization

■ Reduce inflections or variant forms to base form

■ Find the correct dictionary headword form

■ Differentiates between word forms: nouns (N), verbs (V), adjectives (A)

51

Raw Lemmatized (N) Lemmatized (V) Lemmatized (A)

running running run running

phones phone phone phones

went went go went

worse worse worse bad

mice mouse mice mice

Normalization — Lemmatization: Characteristics
● Pros

■ Lemmatized words are proper words (i.e., dictionary words)

■ Can normalize irregular forms (e.g., went ➝ go, worst ➝ bad)

● Cons
■ Requires curated lexicons / lookup tables + rules (typically)

■ Requires Part-of-Speech tags for correct results

■ Generally slower as stemming

52

Normalization — Stemming & Lemmatization
● Back to our motivating example

53

Raw: "dogs make the best friends" "a dog makes a good friend"

Stemmed: "dog make the best friend" "a dog make a good friend"

Lemmatized: "dog make the good friend" "a dog make a good friend"

Normalization — Final Words
● Canonical form also effects tokenization, e.g.: Penn Treebank Tokenizer

■ Separate out clitics (e.g., doesn't ➜ does n't; John's ➜ John 's)

■ Keep hyphenated words together

■ Separate out all punctuation symbols

● Other common normalization steps
■ Removal of stopwords (e.g., a, an, the, not, and, or, but, to, from, at)

■ Removal of non-standard tokens (e.g., URs, emojis, emoticons)

■ ...

54

🏃 Quick Quiz

55

Stemming

Case-folding

Stop word removal

Lemmatization

A

B

C

D

Which preprocessing step would
arguably affect sentiment analysis

negatively?

In-Lecture Activity

Outline

56

● Regular Expressions
■ Basic Concepts
■ Relationship to FSA
■ Error Types

● Corpus Preprocessing
■ Tokenization
■ Normalization
■ Stemming / Lemmatization
■ Segmentation

● Word error handling
■ Spelling Errors
■ Minimum Edit Distance
■ Noisy Channel Model

C
S

42
48

 N
at

u
ra

l L
an

g
u

ag
e

P
ro

ce
ss

in
g

 —
 L

ec
tu

re
 2

Sentence Segmentation
● Sound like a simple task but…

■ Period "." can be quite ambiguous (e.g., "1.25", "U.S.A.", "Dr.") — "?", "!" relatively unambiguous

■ Poor punctuation in informal text (common: missing whitespaces, missing capitalization)

● Alternative: binary classifier
■ Consider each period "." in a text

■ Classify: EndOfSentence or NotEndOfSentence

57

➜ RegEx for segmenting sentences quickly become very complex

Example RegEx: (?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s
(Source: Stackoverflow)

➜ Possible approaches: handwritten rules, set of RegEx, machine learning

Example: Simple Rules (represented as a binary Decision Tree)

58

Lots of blank lines
after period "."?

More than one
space after "."?

Word before "." is a
know abbreviation?

First letter after "."
is capitalized?

First character after
"." is a letter?

First character after
"." is a digit?

YES

YES

YES

YES YES

YES

NO

NO

NO

NONO

EOS

EOS

EOSN-EOS

N-EOS

NO

N-EOS EOS

Quick quiz: What are some
common cases where this

classifier would fail?

Many Other Features Conceivable
● Example: numerical features

■ length of word before / after period "."

■ Distance (in #chars) to next punctuation mark

■ Probabilities derived from a dataset
(e.g., probability of with "." occurs at the end of sentence)

59

Side note: In informal text (e.g., social media) people often use emoticons
or emojis to separate sentences, making this task even more complicated.

Break

60

Meme Credits: The Language Nerds @ Facebook

Why are you taking this module?

61

 Tutorial Lecture Exam Office
Hours

Venues

62

Major or Programme

63

Overseas?

64

NLP Career Path

65

What do you want to learn?

66

Your Concerns!

67

Outline

68

● Regular Expressions
■ Basic Concepts
■ Relationship to FSA
■ Error Types

● Corpus Preprocessing
■ Tokenization
■ Normalization
■ Stemming / Lemmatization
■ Segmentation

● Word error handling
■ Spelling Errors
■ Minimum Edit Distance
■ Noisy Channel Model

C
S

42
48

 N
at

u
ra

l L
an

g
u

ag
e

P
ro

ce
ss

in
g

 —
 L

ec
tu

re
 2

Spelling Errors

69

1. Non-word error detections
■ Basically, word is not found in dictionary

■ Example: detecting graffe (misspelling of giraffe)

2. Isolated-word error correction
■ Consider word in isolation (i.e., without surrounding words)

■ Example: correcting graffe to giraffe

3. Context-sensitive error detection & correction
■ Consider surrounding words to detect and correct errors

■ Important for "wrong" words that a spelled correctly

■ Examples: there vs. three, dessert vs. desert, son vs. song

In
cr

ea
si

n
g

 C
o

m
p

le
xi

ty

acress
actress

across

access

acres

caress

?

?

?

?
?

Spelling Errors — Common Patterns
● Observation

■ Most misspelled words in typewritten text are single-error

■ Damerau (1964): 80%, Peterson (1986): 93-95%

● Single-error misspellings
■ Insertion (e.g., acress vs. acres)

■ Deletion (e.g., acress vs. actress)

■ Substitution (e.g., acress vs. access)

■ Transposition (e.g., acress vs. caress)

70

For non-word errors:

➜ Good candidates are orthographically similar

➜ Minimum Edit Distance

Outline

71

● Regular Expressions
■ Basic Concepts
■ Relationship to FSA
■ Error Types

● Corpus Preprocessing
■ Tokenization
■ Normalization
■ Stemming / Lemmatization
■ Segmentation

● Word error handling
■ Spelling Errors
■ Minimum Edit Distance
■ Noisy Channel Model

C
S

42
48

 N
at

u
ra

l L
an

g
u

ag
e

P
ro

ce
ss

in
g

 —
 L

ec
tu

re
 2

Minimum Edit Distance (MED)
● Minimum Edit Distance between 2 strings s

1
 and s

2
■ Minimum number of allowed edit operations to transform s

1
 into s

2

■ Allowed edit operations: Insertion, Deletion, Substitution, Transposition

● Example
■ s

1
 = "LANGUAGE"

■ s
2
 = "SAUSAGE"

72

Not covered here to
keep examples simple

L A N G U * A G E
| | | | | | | | |
S A * * U S A G E

➜ Alignment of MED:

MED if all operations cost 1 ➜ 4

MED if Substitution costs 2,
Insertion 1, Deletion 1

➜ 5

Minimum Edit Distance — Calculation
● Problem formulation: Find a path (i.e., sequence of edits) from start string to final string

■ Initial state: the word being transformed (e.g., "LANGUAGE")

■ Target state: the word being transformed into (e.g., "SAUSAGE")

■ Operators: insert, delete, substitute

■ Path cost: aggregated costs of all edits

73

LANGUAGE

ANGUAGE SLANGUAGE SANGUAGE

substitutedelete insert

… … … … … … … … …

➜ Potentially huge search space

➜ Naive navigation of all path impractical

Minimum Edit Distance — Calculation
● Observations

■ Many distinct paths end up in the same state

74

LANGUAGE

ANGUAGE SLANGUAGE SANGUAGE

substitutedelete insert

delete

➜ No need to keep track of all paths

➜ Only important: "cheapest" path to each revisited state
 (best in terms of costs, not just number of operations!)

➜ Solve using Dynamic Programming
 solving problems by combining solutions to subproblems

Minimum Edit Distance — Calculation
● Input: 2 strings

■ Source string of length

■ Target string of length

● Define as MED between and

● Bottom-up approach of Dynamic Programming
■ Compute for small , (base cases)

■ Compute for larger , based on previously computes for smaller ,

75

➜ MED between and is thus

first i chars of X first j chars of Y

Minimum Edit Distance — Calculation
● Initialization of bases cases

■ (getting from to empty target string requires deletions)

■ (getting from empty source string to requires insertions)

● For and

76

Assumptions for costs

Insert: 1

Delete: 1

Substitute: 2

➜ Levenshtein MED

Insert

Delete

Substitute

Complexity analysis

Space: O(nm)

Time: O(nm)

Minimum Edit Distance — Calculation Example

77

Insert

Delete

Substitute

Minimum Edit Distance — Calculation Example

78

Minimum Edit Distance — Backtrace & Alignments
● Current limitation

■ Base algorithm only returns the MED

■ Often important: alignment between strings

● Keep track of backtrace
■ Remember from which "direction"

we entered a new cell

■ At the end, trace path from upper right
corner to read of alignment

79

L A N G U * A G E
| | | | | | | | |
S A * * U S A G E

How do we get this?

Keep set of pointers
for each ,

Insert

Delete

Substitute

Note: Backtraces are generally not unique ➜ different alignments for the same MED possible

Small extension to base algorithm:

Minimum Edit Distance — Backtrace & Alignments

80

L A N G U * A G E
| | | | | | | | |
S A * * U S A G E

Complexity analysis

Time: O(n+m)Quick quiz: Why do we choose
the diagonal path here?

Minimum Edit Distance — More Examples

81

● Biology: Align 2 sequences of nucleotides AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

* A G G C T A T C A C C T G A C C T C C A G G C C G A * * T G * C C * * C
| |
T A * G C T A T C A * C * G A C C * G C * G G T C G A T T T G C C C G A C

MED = 15

82

🏃 In-Lecture Activity (5 mins)
● Task: Compute the MED and alignment between "NUS" and "TRUST"

■ Post your MED (Levenshtein) and alignment to Canvas > Discussions
(individually or as a group – add all group members' names to the post)

● Try to complete the table for this task
(probably not needed as the words are very short)

● Some of you can share their solution

Example alignment (but bad one!)

NUS*****
***TRUST

In-Lecture Activity

🏃 In-Lecture Activity (5 mins)
● Solution

83

* N U S *
| | | | |
T R U S T

In-Lecture Activity

"The is a great place to stay in Singapore"

Minimum Edit Distance — Other Uses in NLP
● Evaluating Machine Translation and speech recognition

e.g., How similar are 2 translations?

● Named Entity Extraction and Entity Coreference

84

Spokesman confirms * senior government adviser was shot *

| | | | | | | | |

Spokesman said the senior * adviser was shot dead

Reference:

Prediction:

"We stayed at the prior to a cruise"* Merchant Court
| |

Swissotel Merchant Court

Referring to the same entity?

Minimum Edit Distance — Efficiency

● Time: O(nm)

● Space: O(nm)

● Backtrace: O(n+m)

85

Minimum Edit Distance — Efficiency

● Time: O(nm)

● Space: O(nm)

● Backtrace: O(n+m)

86

Minimum Edit Distance — Extensions
● Weighted Minimum Edit Distance, e.g.:

■ Spell Correction: some letters are more likely to be mistyped than others

■ Biology: certain kinds of deletions or insertions are more likely than others

87

➜ Generalization of algorithm
■ Application-dependent weights (i.e., costs for edit operations)

Initialization of base cases: Recurrence relation:

Minimum Edit Distance — Extensions
● Needleman-Wunsch

■ No penalty for gaps (*) at the beginning
or the end of an alignment

■ Good if strings have very different lengths

● Smith-Wasserman
■ Ignore badly aligned regions

■ Find optimal local alignments within substrings
(Levenshtein finds the best global distance and alignment)

88

Common application:
Alignment of nucleotides sequences

Outline

89

● Regular Expressions
■ Basic Concepts
■ Relationship to FSA
■ Error Types

● Corpus Preprocessing
■ Tokenization
■ Normalization
■ Stemming / Lemmatization
■ Segmentation

● Word error handling
■ Spelling Errors
■ Minimum Edit Distance
■ Noisy Channel Model

C
S

42
48

 N
at

u
ra

l L
an

g
u

ag
e

P
ro

ce
ss

in
g

 —
 L

ec
tu

re
 2

Where We are Right Now
● Given a misspelled word, generate suitable candidates for error correction

■ 80% of errors are within minimum edit distance 1

■ Almost all errors within minimum edit distance 2

■ Covers also missing spaces and hyphens
(e.g., thisidea vs. this idea; inlaw vs. in-law)

● Still missing: Which is the most likely candidate?
■ Ranking of candidates to show top candidates first

■ Support for automated spelling correction

90

acress
actress

across

access

acres

caress

MED=1

MED=1

MED=1

MED=1

MED=2

➜ Noisy Channel Model
 Idea: Assign each candidate a probability

Decoding: Observing error , can we predict correct word ?

Noisy Channel Model — Intuition

91

Noisy Channel
intended word observed word

e.g.: P(acress|actress)

e.g.: actress e.g.: acress

Probability that word
gets misspelled as

➜ How to calculate and ?

Quick refresher: Bayes' Theorem

Noisy Channel Model — Bayesian Inferencing

92

Given an observation of a misspelled word,

find the correct word :

➜

➜

Noisy Channel Model — Calculating/Estimating
● Approach using Maximum Likelihood Estimate (MLE)

■ Required: Large text corpus with words

■ Calculate/estimate with

● Example
■ 100 MB Wikipedia dump

■ Total of 14.4M+ words

93

w freq(w) P(w)

actress 1,135 0.0000784

cress 1 0.00000…

caress 3 0.00000…

access 1,670 0.0001153

across 1,756 0.0001213

acres 177 0.0000122
Note: The frequencies can widely different across different
corpora (e.g. Wikipedia articles vs. English Literature).

Noisy Channel Model — Calculating/Estimating
● In general, almost impossible to predict

■ Predictions depends on arbitrary factors
(e.g., proficiency of typist, lighting conditions, input device)

● Estimate based on simplifying assumptions (Kernighan et al., 1990)

■ Most misspelled words in typewritten text are single-error

■ Consider only single-error misspellings: Insertion, Deletion, Substitution, Transposition

94

number of times was typed as

number of times was typed as

number of times is substituted for

number of times was typed as

number of times that appeared in the training set

number of times that appeared in the training set

Noisy Channel Model — Calculating/Estimating
● Definition of 4 confusion matrices (1 for each single-error type)

■ Each confusion matrix lists the number of times one "thing" was confused with another

■ e.g., for substitution, an entry represents the number of times one letter was incorrectly used

● Underlying definitions for generate confusion matrices

95

Noisy Channel Model — Calculating/Estimating

96

= i-th character in the correct word

= i-th character in the misspelled word

Noisy Channel Model — Calculating/Estimating

97
Source: A Spelling Correction Program Based on a Noisy Channel Model (Kernighan et al., 1990)

Noisy Channel Model — Example
● Noisy channel probabilities for "acress"

98

Candidate
Correction

Correct
Letter

Error
Letter

x|w P(x|w) P(w) 109*P(x|w)P(w) %

actress t c|ct .000117 .0000231 2.7 35.9

cress a a|# .00000144 .00000054 .00078 ~0

caress ca ac ac|ca .00000164 .00000170 .0028 ~0

access c r r|c .00000021 .0000916 .019 ~0

across o e e|o .0000093 .000299 2.8 37.2

acres s es|e .0000321 .0000318 1.0 13.3

acres s ss|s .0000342 .0000318 1.0 13.3

➜ Choice of candidate for correction: across

Noisy Channel Model — Discussion
● Basic limitation: No consideration of additional context

■ Model only applicable for non-word errors

■ Basic model will always suggest "across" to correct "acress"

99

"The role was played by an acress famous for her comedic timing."

"actress" here the better candidate

➜ Language Models (next lecture)

Summary
● RegEx — fundamental and useful tool

● Text Preprocessing — getting your data ready for analysis
■ Tokenization

■ Stemming / Lemmatization

■ Normalization

● Error Handling (so far)

■ Focus on single-error misspellings

■ Focus on isolated-word error correction

100

typical very task-dependent!

already very non-trivial!

Student Learning Outcomes

Outlook for Next Week: Language Models

101

Image from Da Nina @ Unsplash

Student Learning Outcomes

Pre-Lecture Activity from next week

102

Pre-Lecture Activity for Next Week
● Assigned Task

■ Post a 1–2 sentence answer to the following question into the L1 Discussion
(you will find the thread on Canvas > Discussions)

"What do we mean when we talk about
the probability of a sentence?"

Side notes:
● This task is meant as a warm-up to provide some context for the next lecture
● No worries if you get lost; we will talk about this in the next lecture
● You can just copy-&-paste others' answers, but his won't help you learn better

