National University
of Singapore

NUS | Computing

CS4248: Natural Language Processing

Lecture 2 — Strings & Words

N
()
S
=

=1
(S]
()

-
o)

=
(7))
N
[¢))
O
o
S

o
(<)
o)
©
=
o)
c
(1)
-
©

S

=
=)
©
Z
o)
<
AN
<
n
(&)



Recap of Week 01

Communication with Machines

Humans

Machines

< Goneraon |

Natural
Language

RE

Some abstract internal
representation / model of
language and the world

Source: Wiki Common (CC BY-SA 4.0): gpu

NLP in One Slide

™ characters _ e
Y morphemes Lexical Ana|ys|s © Tokenization o Stemming
% words (understanding structure & meaning of words) ol ization o Lemr Y
E < >
) Syntactic Analysis ® Part-of-Speech Tagging
phrases (organization of words into sentences) e Syntactic parsing (constituents, dependencies)
clauses s
sentences - N * Word Sense Disambiguation
Semantic AnaIYSIS o Named Entity Recognition
(meaning of words and sentences) 2 "

. Role Labeling
paragraphs Discourse Analysis e Coreference / anaphora resolution
documents (meaning of sentences in documents) . Ellpsis resolu.tlon

o Stance detection

H =
§ world knowledge Pragmatic Analysis e Textual Entailment
</ common sense (understanding & interpreting language in context)  Intent recognition

£

£ % A DYl Winograd Schema

(5 minutes)

Find and post your own
examples for Winograd
Schema(s)

Explain what iswi,gugus about it.
Go wild! Find good interesting ones.

Give kudos and upvote your peers!
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What is NLP? — The Bigger Picture

Human Language
e Speech
o Writing

Algorithms, e.g.:
e Indexing / search
e Pattern matching

Computer

Linguistics Science

NLP

Artificial
Intelligence

Machine Learning

Deep Learning s




Outline

e Regular Expressions

m Basic Concepts
m Relationship to FSA
m Error Types

Lecture 2

e Corpus Preprocessing
m Tokenization
m Normalization
m Stemming / Lemmatization
m Segmentation

e Word error handling
m Spelling Errors
m  Minimum Edit Distance
m Noisy Channel Model
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Regular Expressions

e Regular Expression — Definition
m Search pattern used to match character combinations in a string

m Pattern = sequence of characters Example: password validation

* Must have a minimum of 8 characters

P Common applications * Must not contain username

. . * Must include at least 1 uppercase
m Parse text documents to find specific character patterns _
* Must include at least 1 lowercase

m Validate text to ensure it matches predefined patterns * Mustinclude at least 1 digit or 1 special character:
~1@#8%2&*_-+="|\()(H]:;""'<>,.2/

m Extract, edit, replace, delete substrings matching a pattern

e Two basic search approaches
m Default: match only first occurrence of pattern

m Global search: match all occurrences of pattern (assumed in most following examples)



Basic Patterns

e Fixed patterns floor =» My block has 15 floors, and I live on floor 5.
5 =» My block has 15 floors, and | live on floor 6.

blocks =» My block has 15 floors, and I live on floor 5.

e Special characters (metacharacters)

Explanation

matches any character except line breaks
A match the start of a string
$ match the end of a string
| matches RegEx either before or after the symbol (e.g., floor | floors)

\b matches boundary between word and non-word



Character Classes

e Character class
m Defines set of valid characters

m Enclosed using "[...]

m Can be negated: "[~...]"

[0-9][0-9] =» My block has 15 floors, and I live on floor 5.

(match all sequences of 2 digits)

[.,;:] =» My block has 15 floors, and I live on floor 5.

(match all sequences of length 1 that are either a period, comma, etc.)

[~a-z] =» My block has 15 floors, and I live on floor 5.

(match all sequences of length 1 that are not a lowercase letter)



Predefined Character Classes

e Common character classes with their own shorthand notation (.c., metacharacters)

Alternative Explanation

\d

\D

\s

\s

\w

\wW

[0-9]

[70-9]

[ \n\r\t\f]

[~ \n\r\t\f]

[a-zA-20-9 ]

["a-zA-20-9 ]

matches any digit

matches any non-digit

matches any whitespace character

matches any non-whitespace character

matches any word character

matches any non-word character



Repetition Patterns

e \Very common: patterns with flexible lengths, e.g.
m  All numbers with more than 2 digits

m All words with less than 5 characters

e Repetition patterns — metacharacters

+ 1 or more occurrences

* 0 or more occurrences

? 0 or 1 occurrences
{n} exactly n occurrences

{1,u} between 1 and u occurrences; can be unbounded: {1, } or {, u}



Repetition Patterns — Examples

\d{z2,} =

\d+ =»

\b\w{2,4}\b =>

\b[Ff]loor[s]?\b =

My block has 15 floors, and I live on floor 5.

(match all numbers with 2 or more digits)

My block has 15 floors, and I live on floor 5.

(match all numbers with 1 or more digits)

My block has 15 floors, and | live on floor 5.

(match words with 2 to 4 characters)

My block has 15 floors, and I live on floor 5.

(match occurrences of "floor", either capitalized or not, either in singular or plural)



Quick quiz: In which case(s) would the RegEx
G ro u pS below fail to correctly match an email address?

e Groups: Organizing patterns into parts
m Groups are enclosed using "(...)"

m While whole expression must match, groups are captures individually
(a match is no longer a string but a tuple of strings, on for each group)

m Groups can be nested, e.g., (...(...)...((...))...)

(order of groups depends on the order in which the groups "open")

Send an email to alice@example.org for more information.

Match @-symbol Match: user@example.org
([\w.-]+)@ ([\w.-]+) Group #1: | alice
\ / Group #2: example.org

Match 1 or more letters, digits,
underscores, or periods

10



Backreferences e ey

e Reference groups within a RegEx
m Find repeated patterns (see example below)

m Support only partial replacement of matches

e Example:
m "My mom said | need to pass this test."”

m Goal: Find all words that start and end with the same letter

word boundary

/ \ Match: mom Match: test

(\b([a-zA-Z]) \w*\2\b) Group #1: | mom Group #1: | test
\ Group #2: | m Group #2: |t
1 letter 0..* letters, digits, Backreference to the 2nd group
or underscores (=» must be the same letter)

11



Lookarounds

e Special groups — assertions
m Match like any other group, but do not capture the match

m 2 types: lookaheads and lookbehinds

m 2 forms of assertion: positive and negative

I

(?=) positive lookahead A (?=B) =¥ finds expr. A but only when followed by expr. B
(?!) negative lookahead A(?!B) =»finds expr. A but only when not followed by expr. B
(?2<=) positive lookbehind (?<=B) A =» finds expr. A but only when preceded by expr. B

(2<!) negative lookbehind (2<!B) A =» finds expr. A but only when not preceded by expr. B

12



Lookarounds — Example

e Positive lookahead

m "Paying 10 SGD for 1 kg of chicken seems fair."

m Goal: Extract all kg values (numbers followed by the unit kg)

\d+ (?=\s*kqg)

[0-9.,]*[0-9]+ (?=\s*kq)

-

-

"Paying 10 SGD for 1 kg of chicken seems fair.
"Paying 10 SGD for 1.5 kg of chicken seems fair.

"Paying 10 SGD for 1,600.00 kg of chicken seems fair.

"Paying 10 SGD for 1 kg of chicken seems fair.
"Paying 10 SGD for 1.5 kg of chicken seems fair.

"Paying 10 SGD for 1,500.00 kg of chicken seems fair.

13
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m Basic Concepts
m Relationship to FSA
m Error Types
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Pre-Lecture Activity from last week

Pre-Lecture Activity for Next Week

e Assigned Task (due before jan 20)

m Posta 1-2 sentence answer to the following question into the L1 Discussion forum
(you will find the thread on Canvas > Discussion > Week 2 (L1))

"What is the relationship between a Finite State Machine
and Reqular Expressions?"

Side notes:
e This task is meant as a warm-up to provide some context for the next lecture
e No worries if you get lost; we will talk about this in the next lecture
e You can just copy-&-paste others' answers but this won't help you learn better




Pre-Lecture Activity from last week

Regular expressions describe finite state machines, where

They can be converted into each other.

instead of actions, we have individual letters/characters.

Google said they are the same. ChatGPT said there are totally However, FSM implementations of Regex cannot do capture

different. Me myself think that regular expression could be groups, and in general, offer different conveniences/challenges in

drawn as state machine using criteria together with their implementation as compared to direct Regex implementations.

groupings as state transitions. So deadend, spider trap any thing References:
can happen in state graph in both deterministic and non. @

https:/bakalian.cs.umd.edu/assets/notes/fa.pdf &=

However, parsing a string to regex would be deterministic at
some point.
FSM is a mathematical model of computation. According to the
different transfer functions, it can be divided into Deterministic
Finite Automaton(DFA) and Nondeterministic Finite

Regular Expressions can be used to represent a Finite State
& ? P Automaton(NFA).

Machine via a regular expression pattern. A regular expression

pattern can be converted into a Finite State Machine directed Regular expressions are based on the theory of automata. After

graph that enable us to perform character matching and the user writes the regular expression, the corresponding FSM

can be constructed through the regular expression. (This FSM

understanding a word's morphology.
may be DFA or NFA)

References: Rk
- https:/ljvmiranda921.github.io/notebook/2022/10/07 /finite- Grammar<
state-automata/ 5

- https:/www.cs.drexel.edu/~johnsojr/2006-

07/winter/cs360/lectures/lec2.html

v

Regular |
Expression:




Relationship to Finite State Automata

e Equivalence

m Regular Expressions describe Regular Languages
(most restricted types of languages w.r.t Chomsky Hierarchy)

m Regular Language = language accepted by a FSA

Example: FSA that accepts the Regular Language
described by the Regular Expression I(o+l)+

Regular Expression
I(o+I)+

@ Regular Language

{lol, loooal, lolol, loooloal, ...}

Chomsky Hierarchy
(Source: Wikipedia)

recursively enumerable

context-sensitive

context-free

17


https://en.wikipedia.org/wiki/Chomsky_hierarchy

Relationship to Finite State Automata

e Basic equivalences

Q

a

ab

Q
(o3

- (=) (&
’ m

Q



In-Lecture Activity

£ A A In-Lecture Activity (5 mins)

e Task: Find the RegEx describing the FSA below

m Post your RegEx to Canvas > Discussions
(individually or as a group; include all group members' names in the post)

m Optional: There is more than one correct answer = Why?
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Error Types — What Can Go Wrong

e Example: Find all occurrences of article "the"

m Naive approach: "the" (fixed pattern)

incorrect matches

Quick quiz: What would be a
better RegEx for this task?

correct matches

There's nkher way to learn the power of Regular Elpressmns
than to use them regularly. The productivity is worth the effort.

missing match

21



Error Types

e 2 basic types of errors

Matching strings that we should not have matched

(e.g., other, theology, weather, bathe, mother)

Not matching things that we should have matched
(e.g., THE)

}4
}»

False Positives
(Type | Errors)

False Negatives
(Type Il Errors)

22



Error Types — Observations

e Many contexts deal with these 2 types of errors, eg:

m Medical testing (e.g., ART test is positive but person is not infected with COVID = false positive)

m Information retrieval (e.g., a Web search is missing a relevant page = false negative)

m Document classification (e.g., an abusive tweet has be classified as positive =» false positive)

o RedUCing errors false nfgative false B?sitive

4 N\ 4 N\
m Both error types not always equally bad (infected person tests negative vs. healthy person test positive)

m Reducing False Positives and False Negatives often in conflict
(reducing False Positives often increases False Negatives, and vice versa)

23



Regular Expressions — Summary

e Know their powers
m Extremely useful tool for many

(low-level) text processing tasks
(e.g., data preprocessing, tokenization, normalization)

m Important skill for anyone
working with strings or text

e Know their limitations
m Regular Expressions represent hard rules

m Higher-level text processing task generally
require statistical models ("soft" rules)

=» Machine Learning classifiers

WHAT ¢ives PEOPLE
FEELINGS OF POWER

MONEY

STATUS

KNOWING
REGEX

24
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Tokenization

e Tokenization: splitting a string into tokens =» vocabulary et of ail unique tokens)

m Token = character sequence with a semantic meaning
(typically: words, numbers, punctuation — but may differ depending on applications)

m Very important for step for most NLP algorithms
(tokenization errors quickly propagate up =¥ "garbage in, garbage out")

e 3 basic approaches

character- . . .
based S h e S driilv| i/n g flals|t|e|r
subword- . . .
based She S driv ing fast er
word- Sh , drivi fast
based e S riving aster

Character-based tokenization
trivial (e.g., using Regex: .)

tlhi an

all|l|lolw el|d

allow ed

allowed

26



Tokenization — Word-Based

e 2 intuitive approaches (soived using Regex)
m Match all words, numbers and punctuation marks

Quick quiz: What is an important
assumption for the 2 approaches?

> \wH[\d+|[,.;:]

m Match boundaries between "words" and "non-words" = (2=\W) | (?<=\W)

\w+ |\d+|[,.;:] => NLP is fun, and there is so much to learn in 13 weeks.

(2=\W) | (2<=\w) =>  NLP||s|[unl|| nd|[here||is| |so| Imuchl [to| learn| |in| |t 3| Weeks|

27




Tokenization — It Quickly Gets Tricky

Multiword phrases
Common contractions

Hyphenations

Acronyms, names, etc.

Special tokens

| just came back from New York City.

I'm not home, so don't call.

NLP is a well-defined but non-trivial topic.

| watched a C++ documentary on T.V.

My email is chris@nus.comp.nus.sg :0)

-

RegEx used:
\wt|\d+ | [,.7:]

28



Example: spaCy Tokenizer

“Let’s g0 to N.Y.!”
7 Let’s go | to NY.!”
T :
“lllet | 's | go to N.Y.!”

1 1 1 | —
“IlLlet|| 's|| go || to N.Y.! &
| | | | | — |
“''let || ’'s | go to |[|NY. || !]I]”

| l | | l | 1
“IlLlet|| ’s|| go || to NY. |l ]I

Source: https://spacy.io/usage/spacy-101

EXCEPTION

EXCEPTION

(1) Split string on whitespace characters

(2) From left to right, recursively check substrings:

e Does substring match an exception rule?
(e.g., "don't" — "do", "n't", but keep "U.K.")

e Can a prefix, suffix or infix be split of?
(e.g., commas, periods, quotes, hyphens)

Substring checks based on
e Regular Expressions
e Hand-crafted rules / patterns

29


https://spacy.io/usage/spacy-101

Example: Chris's Tokenizer

@/B

@ B

€< € € € €

€

)

)

)

Sequential labeling of characters

Label all whitespace characters

«

Label all unicode characters

«

Label all emoticons

«

Label all special token types

«

Label all punctuation marks

«

Label all all alphanumeric characters

=» Tokens = Substrings with adjacent characters with the same labels

30



Tokenization — Language Issues

e French
m Different uses of apostrophes and hyphens (compared to English)

direct article indicates 1mperative
/\ [
I'ensemble donne-moi
“the whole" / "all" "give me!”
e German

m \Very common: compound nouns

Arbeiterunfallversicherungsgesetz

"worker injury insurance act"

-» 1 token or 2 tokens?

=» important: compound splitter

31



Tokenization — Language Issues

e Languages without whitespaces separating words

Chinese s R B\ B (ETEIE B| & S| M|eE T B A
" Sharapova now lives in us southeastern Florida "
Japanese I+ —F 5004 (XIFEHRAF B Df-HEEH

e multiple syllabaries \ /

|

e multiple formats for Katakana Hiragana Kanji

dates and amounts

ffp500K(.%'96,c/)10075F )

Romaniji

H

32



Tokenization — Word Segmentation of Chinese Text

e Baseline algorithm: Maximum Matching

d
SR B S ER RSN HE R A

3
BRI B X R RSN HE R A

Sharapova
\ ¢
SHRLREE P B X ERE SN BT BiX

¥
S L M R AR 7 EEAR A SR 5 B3R

now

(4)

Place a pointer at the
beginning of the string

Find longest word in dictionary that
matches string starting the pointer

Mover the pointer over
the word in the string

Goto #2 to process the whole string

33



Tokenization — Maximum Matching

e Surprisingly good performance on Chinese text
(even better performance with probabilistic methods or extensions)

e Generally does not work for English text

correct . the table down there

thetabledownthere

Maximum Matehing = o ota bled own there

34



Tokenization — Subword-Based

e Subword-based tokenization
m So far: a priori specification of rules (e.g., Regex) what constitutes valid tokens

m Now: use data to specify how to tokenize

e Why do we want to do this?
m Out Of Vocabulary (OOV) words

(word/token an NLP model has not seen before) -» problematic when building statistical models

m Very rare words in corpus
Obamacare kiasuism chillax

Examples:

frequent tokens

=* Goal: Split OOV and rare words into (some) known & frequent tokens

35



Tokenization — Subword-Based

e Different algorithms for subword tokenization
m Byte-Pair Encoding (BPE), Unigram Language Model Tokenization, WordPiece, etc.

e Different approaches, similar 2-parts setup

(1) Token Learner
Takes raw training corpus and induces a vocabulary (i.e., set of tokens)

(2) Token Segmenter
Takes a raw text and tokenizes it according to vocabulary

36



Quick quiz: What happens

Tokenization — BPE Token Learner k20 or ker 7

"low low low low low lower lower newest newest newest

Corpus: newest newest newest widest widest widest longer”

special end-of-word token

Initialize vocabulary (e.g., {'d’, 'e’, ‘g’ /", I, 'n’, ‘o', 'r’, 's’, 't', ‘W, D)
REPEAT
Find the 2 tokens most frequently adjacent to each other (e.g., ‘e’, 's)
Add a new merged token ‘es’to vocabulary
Replace every adjacent 'e’ 's’in corpus with ‘es’
UNTILmerges have been done

\

parameter of algorithm

37



Tokenization — BPE Token Learner

corpus representation

6

= N[ | O

corpus representation

6

= N[ | O

e
o
i
o

O

w e s t

w es t

vocabulary

d,e,g,1,1,n,0,r,s,t,w, _

merges

@ most frequent pair: e & s (9 occurrences)

vocabulary

d,e,g,1,1,n,0,1r,s,t,w, ,es

merges

(e, s)

@ most frequent pair: es & t (9 occurrences)
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Tokenization — BPE Token Learner

corpus representation

6

= N[ | O

n

e w est

corpus representation

6

= N[ | O

n
1
W
1
1

e w est

o w

idest_
O W e r

onger

vocabulary

d,e,g,1,1,n,0,1,s,t,w, ,es,est

merges
(e, s), (es, t)

@ most frequent pair: est & _ (9 occurrences)

vocabulary

d, e g,1,1,n,0, 1,8, t,w,_,es,est,est

merges
(e, s), (es, t), (est, )

@ most frequent pair: 1 & o (8 occurrences)

39



Tokenization — BPE Token Learner

corpus representation

6 newest

5 low

3 w i d est

2 lower

1 longer

corpus representation

6 newest

5 low

3 w i d est

2 low e r

1 longer

vocabulary

d, e, g,1,1,n,0,1r,s,t,w,_,es,est,est ,1lo

merges
(e, s), (es, t), (est, ), (1, 0)

@ most frequent pair: 1o & w (7 occurrences)

vocabulary

d,e,g,1,1,n,0,r,s8,t,w,_,es,est,est , 1o, low

merges
(e, s), (es, t), (est, ), (1,0), (1o, w)

@ most frequent pair: n & e (6 occurrences)

40



Tokenization — BPE Token Learner

vocabulary d,e,g,1i,1,n,0,1r,s,t,w,_,es,est,est ,1lo, low, ne
merges (e, s), (es, t), (est, ), (1, o), (Lo, w), (n, e)
vocabulary d,e,g,1i,1,n,0,1,s,t,w,_,es,est,est ,lo, low, ne, new
merges (e, s), (es, t), (est, ), (1, 0), (1o, w), (n, e), (ne, w)
vocabulary d,e,g,i,1,n,0,1r,s,t,w,_,es,est,est ,lo, low, ne, new, newest _

merges (e, s), (es, t), (est, ), (1, 0), (Lo, w), (n, e), (ne, w), (new, est )
-

41



Tokenization — BPE Token Segmenter

vocabulary d,e,g,i,1,n,0,1,s,t,w,_,es,est,est ,lo, low, ne, new, newest ,

low ,er,er ,wi,wid,widest , lower , lon, long, longer

merges (e, s), (es, t), (est, ), (1, 0), (1o, w), (n, e), (ne, w), (new, est_), (Low, ), (e, 1),
(er, ), (w, 1), (wi, d), (wid, est ), (low, er ), (1o, n), (lon, g), (long, er )

Tokenize/segment

1) " ne wer”xr N A
newer —
(n, e)
ne wer X
(ne, w)
Run each merge in order u
new € r —_— . "non 7]
they have been learned — ~ | =» tokens: "new", "er_
(e, r)
new er %
(er, )
new er




Tokenization — Summary

e Tokenization as low-level NLP task
m Challenges: important, non-trivial, language-dependent

m Particularly tricky for informal language (e.g., social media)

e 3 basic approaches

m Character-based (trivial to do but often not suitable — individual characters generally carry no semantic meaning)
m \Word-based (a priori specification of rules; language-dependent; problem: OOV/rare words)

m Subword-based (tokenization learned from data — tokens are often morphemes!)

e Practical consideration (when using off-the-shell word-based tokenizers)
m What is my type of text (e.g., formal or informal)? Are there special tokens (e.g., URLs, hashtags)?

m Try and assess different tokenizers — very, very last resort: write your own tokenizer

43
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Normalization

e Goal: Convert text into a canonical (standard) form

m Remove noise / "randomness" from text
m Affects characters, words, sentences, documents

e Implicit definition of equivalence classes
m Suitable normalization steps depend on task/application

Alternative to equivalence classes: asymmetric expansion

Example: Web Search (utilize case of search terms)

Entered term Searched terms

window - window, windows

windows - Windows, windows, window
Windows - Windows

Germany
GERMANY

USA
US.A
US of A

tonight
tonite
2N8

connect
connects
connected
connecting
connection

germany

USA

tonight

connect

smile

45



Normalization — Case Folding

e \When to fold?

m Common application: Information Retrieval
(e.g., Web search where must users type only in lowercase anyway)

m Potential problems: Bush vs. bush, MOM vs. mom, Cloud vs. cloud, etc.

(potential exception: upper case word in mid sentence?)

e \When NOT to fold?

m NLP tasks where case of letters or words are important features

m Examples: Named Entity Recognition, Machine Translation

They sent us a card from the US during their vacation.

\ /

Distinction important for NER and MT!

46
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Normalization — Stemming & Lemmatization

e Motivating example:

"dogs make the best friends” vs. "a dog makes a good friend"

= Very similar semantics but (very) different syntax

e Common reasons for variations of the same word
m Singular vs. plural form (mainly of nouns)

m Different tenses of verbs =» Can we normalize words to abstract

, from such variations?
m Comparative/superlative of adjectives
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Normalization — Stemming

e |dea of Stemming
m Reduce words to their stem

m Approach: crude chopping of affixes
based on rules (=» language dependent)

m Different stemmers apply different rules

e Characteristics
m Pro: fast + no lexicon required

m Con: stemmed word not necessarily
a proper word (i.e., not in dictionary)

Examples

(alternatives reflect results from different stemmers)

cats
running
phones
presumably
crying

went

worse

best

mice

cat

run
phon(e)
presum
cry/cri
went
wors
best
mic(e)
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Normalization — Stemming: Porter Stemmer

e Porter Stemmer — most common stemmer for English text
m Simple, efficient + very good results in practice

e Series of rewrite rules that run in a cascade
m Output of each pass is fed is input to the next pass

m Stemming steps if a pass yields no more changes

sSses — ss
tional — tion
ies i

stem must contain vowel — (*v*)ing — €

stem must contain >1 chars — (M>1)ement — ¢

More details: https://tartarus.org/martin/PorterStemmer/

e.g.:
e.g.
e.g.,
e.g.:
e.g.,

possesses — possess, classes — class
optional — option, fictional — function
cries — cri, tries — tri

sing — sing, singing — sing, talking — talk

replacement — replac, cement — cement
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https://tartarus.org/martin/PorterStemmer/

Normalization — Lemmatization

e Idea of Lemmatization
m Reduce inflections or variant forms to base form

m Find the correct dictionary headword form

m Differentiates between word forms: nouns (N), verbs (V), adjectives (A)

m Lemmatized (N) Lemmatized (V) Lemmatized (A)

running running running
phones phone phone phones
went went go went
worse worse worse bad

mice mouse mice mice



Normalization — Lemmatization: Characteristics

e Pros
m Lemmatized words are proper words (i.e., dictionary words)

m Can normalize irregular forms (e.g., went — go, worst — bad)

e Cons
m Requires curated lexicons / lookup tables + rules (typically)

m Requires Part-of-Speech tags for correct results

m Generally slower as stemming

52



Normalization — Stemming & Lemmatization

e Back to our motivating example

Raw: "dogs make the best friends"” "a dog makes a good friend"
Stemmed: "dog make the best friend" "a dog make a good friend"

Lemmatized: "dog make the good friend” "a dog make a good friend"
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Normalization — Final Words

e Canonical form also effects tokenization, e.g.: Penn Treebank Tokenizer
m Separate out clitics (e.g., doesn't = does n't; John's = John 's)

m Keep hyphenated words together

m Separate out all punctuation symbols

e Other common normalization steps
m Removal of stopwords (e.g., a, an, the, not, and, or, but, to, from, at)

m Removal of non-standard tokens (e.g., URs, emojis, emoticons)

54



In-Lecture Activity

£ i % Quick Quiz

A [ Case-folding

Which preprocessing step would B [ Stemming

arguably affect sentiment analysis

negatively?
‘ [ Lemmatization }
D [ Stop word removal }




Outline

e Regular Expressions

m Basic Concepts
m Relationship to FSA
m Error Types

Lecture 2

e Corpus Preprocessing
m Tokenization
m Normalization
m Stemming / Lemmatization
m Segmentation

e Word error handling
m Spelling Errors
m  Minimum Edit Distance
m Noisy Channel Model
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Sentence Segmentation

e Sound like a simple task but...
m Period "." can be quite ambiguous (e.g., "1.25","u.s. A", "Dr.y — "?", "I" relatively unambiguous

m Poor punctuation in informal text (common: missing whitespaces, missing capitalization)
=» RegEx for segmenting sentences quickly become very complex

Example RegEx: (?<!\w\.\w.) (?<![A-Z][a-z]\.) (?<=\.]\?)\s

(Source: Stackoverflow)

e Alternative: binary classifier
m Consider each period "." in a text

m Classify: EndOfSentence or NotEndOfSentence

=?» Possible approaches: handwritten rules, set of RegEx, machine learning
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https://stackoverflow.com/questions/25735644/python-regex-for-splitting-text-into-sentences-sentence-tokenizing

Exam p|B: S| mp|e RUIBS (represented as a hinary Decision Tree)

Lots of blank lines
after period "."?

EOS More than one
space after "."?

T

First character after Word before "." is a

Quick quiz: What are some
common cases where this
classifier would fail?

'"is a letter?

YE‘V

First letter after ".
is capitalized?

know abbreviation?

S e e

First character after
""is a digit?

AR

N-EOS N-EOS

N-EOS EOS
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Many Other Features Conceivable

e Example: numerical features
m length of word before / after period "."

m Distance (in #chars) to next punctuation mark

m Probabilities derived from a dataset
(e.g., probability of with "." occurs at the end of sentence)

Side note: In informal text (e.g., social media) people often use emoticons
or emojis to separate sentences, making this task even more complicated.
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Most relevant =

Nisha Virani
| am completely losing my mind
helpme YU oo Uman

O ¢
0 Hani Schaduwloper

| got fired from the calendar
B factory.. just for taking a day off «s
%D

January -
Fe b ua ry 0 Pavlo A. lvaschenko

13. Obituary ¢3
D

9 2 replies

Gary Chang
Demon! Say your name !

L )+ Bl

&

Lisa Garcia

in high school i had to tell
someone there really is an rin
there... especially since that was
their bday month. §)

&

Qs

< 1reply

Meme Credits: The Language Nerds @ Facebook

D

Arkady Grudzinsky
That's what artificial intelligence
do for vou. | thouaht it's a ioke. but




Why are you taking this module?

It's a core requirement of my programme.
It's an elective course (one of a basket) requirement for my programme.

I need this course to graduate this coming semester.

I'm taking a related focus area, minor or track that has this as part of the
possible fulfilling courses.

I'm a student doing research, and NLP is my research area or related to my
research area.

It looked interesting.

| have friends that are taking this course.

It fits well in my timetable.

Someone referred me to take this course because of its content.
Someone referred me to take this course because of its instruction staff.
| like project courses.

| saw that it was popular.

| have fulfilled all the prerequisites for the course, so why not?

Others, I've mentioned in the next question.

23 respondents
103 respondents

55 respondents

139 respondents

24 respondents

214 respondents
70 respondents
52 respondents
29 respondents
26 respondents
40 respondents
30 respondents
38 respondents

5 respondents

O
R

|
IIIII.II ] I .I’

40 %
21%

54 %

83%
27 *©
20%
11.%
10%
16 %
125
15 %

N
R
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Venues

Strongly prefer physical venue
Rrefer physical venue

Neutral

Disprefer physical venue
Strongly disprefer physical venue

No Answer

85 respondents

68 respondents

64 respondents
13 respondents
26 respondents

2 respondents

38 *
26%
25%
5%
1g -
1%

Tutorial

Lecture

Exam

Office
Hours
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Major or Programme

Arts

Business

Computer Engineering

Computer Sciences

Data Science

English Language, Foreign Language
Linguistics

Math / Statistics

Masters

Ph.D. Candidate

SCALE / Continuing Education Learner
Other

9 respondents
20 respondents
175 respondents

51 respondents

22 respondents

42 respondents

6 respondents

3%
g%
68 *
20/%
0%
0%
9%
16 %
0%
0%

N
®
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Overseas?

Yes, abroad on exchange or NOC.
Yes, on internship.

Considering one of the two above.

No, full-time local student (most students).

1 respondent
25 respondents
13 respondents

219 respondents

0%
10 %

s%

85 %
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NLP Career Path

No idea.

Unlikely.

Somewhat Unlikely.
So-So.

Somewhat Likely.
Likely.

No Answer

16 respondents
9 respondents
29 respondents
72 respondents
100 respondents
31 respondents

1 respondent

3%
11.%
28 %
39 %
12 =
0%
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What do you want to learn?
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Outline

e Regular Expressions

m Basic Concepts
m Relationship to FSA
m Error Types

Lecture 2

e Corpus Preprocessing
m Tokenization
m Normalization
m Stemming / Lemmatization
m Segmentation

e Word error handling
m Spelling Errors
m  Minimum Edit Distance
m Noisy Channel Model
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Spelling Errors

Increasing Complexity

N

1. Non-word error detections
m Basically, word is not found in dictionary

[ ] Example: detecting graffe (misspelling of giraffe)

2. Isolated-word error correction
m Consider word in isolation (i.e., without surrounding words)

m Example: correcting graffe to giraffe

3. Context-sensitive error detection & correction
m Consider surrounding words to detect and correct errors

m Important for "wrong" words that a spelled correctly

m Examples: there vs. three, dessert vs. desert, son vs. song

across
actress
acress ?

caress
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Spelling Errors — Gommon Patterns

e Observation
m Most misspelled words in typewritten text are single-error

m Damerau (1964): 80%, Peterson (1986): 93-95%

e Single-error misspellings
m Insertion (e.g., acress vs. acres)

For non-word errors:

m Deletion (e.g., acress vs. actress)
> =» Good candidates are orthographically similar

m Substitution (e.qg., acress vs. access) - Minimum Edit Distance

m Transposition (e.g., acress vs. caress)
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Outline

e Regular Expressions

m Basic Concepts
m Relationship to FSA
m Error Types

Lecture 2

e Corpus Preprocessing
m Tokenization
m Normalization
m Stemming / Lemmatization
m Segmentation

e Word error handling
m Spelling Errors
m Minimum Edit Distance
m Noisy Channel Model
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Minimum Edit Distance (MED)

e Minimum Edit Distance between 2 strings s, and s,
m  Minimum number of allowed edit operations to transform s, into s,

: : . . . . . Not covered here to
m Allowed edit operations: Insertion, Deletion, Substitution, “—| keep examples simple

e Example
m s = "LANGUAGE"

m S,="SAUSAGE"

LANGU*AGE MED if all operations cost 1 = 4
- Alignmentof MED: | | | | | | | | | MED if Substitution costs 2, 5
SA* * USAGE Insertion 1, Deletion 1



Minimum Edit Distance — Calculation

e Problem formulation: Find a path (.. sequence of edits) from start string to final string
m Initial state: the word being transformed (e.g., "LANGUAGE")

m Target state: the word being transformed into (e.g., "SAUSAGE")
m Operators: insert, delete, substitute

m Path cost: aggregated costs of all edits

LANGUAGE
=¥ Potentially huge search space
| delete | | insert | | substitute |
e I AW =>» Naive navigation of all path impractical
ANGUAGE SLANGUAGE SANGUAGE
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Minimum Edit Distance — Calculation

e Observations
m Many distinct paths end up in the same state

LANGUAGE
| delete | | insert | |substitute|
< !
ANGUAGE SLANGUAGE SANGUAGE

=» No need to keep track of all paths

=» Only important: "cheapest" path to each revisited state = Solve using Dynamic Programming

(best in terms of costs, not just number of operations!) solving problems by combining solutions to subproblems
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Minimum Edit Distance — Calculation

e Input: 2 strings
m Source string X of length

m Targetstring Y of length ™

first i chars of X firstjchars of Y

| |
e Define D(i,j) as MED between X[0..i and Y[0..j]

- MED between X andY is thus D(n,m)

e Bottom-up approach of Dynamic Programming
m Compute D(i, j) for small ¢, j (base cases)

m Compute D(i, j) for largeri, jbased on previously computes D(i, j) for smaller i, j
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Minimum Edit Distance — Calculation

e I|nitialization of bases cases

[ | D(z’) O) = 7 (getting from X|0..i] to empty target string requires i deletions)

[ | D(O,j> :j (getting from empty source string to Y[0..5] requires j insertions)
e ForO<i<nand 0<j3<m

D(Z — l,j) + ] Delete
D(%]) = min D(ij — 1) + 1 Insert

D(i—1. 7 —1 2, ifXli| # Yl[j] Substitute
b )+{0, if X[ = Y]

Assumptions for costs

Insert: 1
Delete: 1
Substitute: 2

->» Levenshtein MED

Complexity analysis
Space:  O(nm)
Time: O(nm)
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Minimum Edit Distance — Calculation Example

D(@ — 17]) + 1 Delete
D(Z,]) = man D(Z,] — 1) + 1 Insert
- - 2, ifX[i] # Y]i] Substitute

Dii=15-1)+ 0, ifX[i] = Y]

|0 &> 2| Q) C| P Q|
b
o
&
en
=
-

:H:OP—\[\DCOHB-U!OD\]OO
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Calculation Example

Minimum Edit Distance

# | S|A|U|S|A |G |E
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Minimum Edit Distance — Backtrace & Alignments

e Current limitation
m Base algorithm only returns the MED

m Often important: alignment between strings

b

How do we get this?

e Keep track of backtrace
m Remember from which "direction" } Keep set of pointers
we entered a new cell for each 7,

m At the end, trace path from upper right
corner to read of alignment

LANGU *AGE
EEEE
SA* *USAGE

Small extension to base algorithm:

LEFT Insert
PTR(Z, ]> = { DOWN Delete
DIAG Substitute

Note: Backtraces are generally not unique =¥ different alignments for the same MED possible

79



Minimum Edit Distance — Backtrace & Alignments

E| 8] «19 18 171 /18 17 16 /5
G| 7| /<.]8 17 16 /<17 16 v — 6
Al 6| <7 16 15 /<16 /5 — 6 — 7
U| 5| ,«16 15 v «5 — 6 —1 7] /<18
G| 4| /<]5 P4 /15| /16| /<17 6 257
N| 3] «]4 N 4 5| el6 LT 18
Al 2] /<13 ) —3 —4| /<5 — 6 — 7
L| 1| el2| /<3| /a4 /15| /16| /17| /<18
# |70t 1 D 3 4 5 6 T
#/ S A U S A G E
LANGU*AGE —
— N i
Quick quiz: Why do we choose SA* *USAGE

the diagonal path here?
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Minimum Edit Distance — More Examples

e Biology: Align 2 sequences of nucleotides

AGGCTATCACCTGACCTCCAGGCCGATGCCC

TAGCTATCACGACCGCGGTCGATTTGCCCGAC

15

ZIT]

pAL

11

L4

712

)

(‘—15

13

i 18

14

16

3| L 12

— 15

=17

112 LT
. 11 |

<« 16
JeliT

116
J15

A 11
L L12

ZeL18

L LTh

16

A PRI

11

I/« 112

=1

L]

-

<.

N

<

O

A

LR ol b e R Ko ol [ [o R d [olhe| Lo IEei Kol Fd £ [olks! [ola

FHlo |0 cof e | | ] 0

| ) R P o
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In-Lecture Activity

£ A A In-Lecture Activity (5 mins)

e Task: Compute the MED and alignment between "NUS" and "TRUST"

m Post your MED (Levenshtein) and alignment to Canvas > Discussions
(individually or as a group — add all group members' names to the post)

e Try to complete the table for this task

(probably not needed as the words are very short)

e Some of you can share their solution

Example alignment (but bad one!)

NUS * * * * *
***TRUST




In-Lecture Activity

£ A A In-Lecture Activity (5 mins)

e Solution




Minimum Edit Distance — Other Uses in NLP

e Evaluating Machine Translation and speech recognition

e.g., How similar are 2 translations?

Reference: Spokesman confirms * senior government adviser was shot *

Prediction: Spokesman  said the senior * adviser was shot dead

e Named Entity Extraction and Entity Coreference

"We stayed at the * Merchant Court prior to a cruise”

"The Swissotel Merchant Court is a great place to stay in Singapore"

|

Referring to the same entity?
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Minimum Edit Distance — Efficiency

e [ime:

e Space:

e Backtrace:
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Minimum Edit Distance — Efficiency

o Time: O(nm)

e Space: O(nm)

e Backtrace: O(n+m)
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Minimum Edit Distance — Extensions

e \Weighted Minimum Edit Distance eg.:

m Spell Correction: some letters are more likely to be mistyped than others

m Biology: certain kinds of deletions or insertions are more likely than others

=?» Generalization of algorithm
m Application-dependent weights (i.e., costs for edit operations)

Initialization of base cases: Recurrence relation:

D(0,0) =0 D(i—1,5) + del(X[i])
D(i,0) = D(i — 1,0) + del(X[i]), for1<i<mn D(i,j) =min § D(i,j — 1) + ins(Y[7])
D(0,5) = D(0,j — 1) +ins(Y[i]), for 1 <i<m D(i—1,j—1) + sub(X[i],Y[i])
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Minimum Edit Distance — Extensions

e Needleman-Wunsch
m No penalty for gaps (*) at the beginning
or the end of an alignment

m Good if strings have very different lengths

e Smith-Wasserman
m Ignore badly aligned regions

m Find optimal local alignments within substrings
(Levenshtein finds the best global distance and alignment)

Common application:
Alignment of nucleotides sequences
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Outline

e Regular Expressions

m Basic Concepts
m Relationship to FSA
m Error Types

Lecture 2

e Corpus Preprocessing
m Tokenization
m Normalization
m Stemming / Lemmatization
m Segmentation

e Word error handling
m Spelling Errors
m  Minimum Edit Distance
m Noisy Channel Model
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Where We are Right Now

e Given a misspelled word, generate suitable candidates for error correction
m 80% of errors are within minimum edit distance 1

m Almost all errors within minimum edit distance 2 across
m Covers also missing spaces and hyphens
(e.g., thisidea vs. this idea; inlaw vs. in-law) soress actress
e Still missing: Which is the most likely candidate? M
m Ranking of candidates to show top candidates first VED=D acres

m Support for automated spelling correction caress

=» Noisy Channel Model

Idea: Assign each candidate a probability
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Noisy Channel Model — Intuition

Probability that word w
gets misspelled as &

Noisy Channel
intended word w observed word

P(x|w) >
e.g.: actress e.g.: acress
e.g.: P(acress|actress)

AV4

P(w) P(x)

Decoding: Observing error 2, can we predict correct word w?
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Noisy Channel Model — Bayesian Inferencing

Given an observation & of a misspelled word, Quick refresher: Bayes' Theorem

find the correct word w:

w = argmax P(w|x)

weV
P P
W = argmax (z|w) Pw)
weV P(w)

= argmax P(z|w)P(w)
weV

£)

P(A, B) = P(A|B)P(B)
P(A, B) = P(B|A)P(A)

- P(A|B)P(B) = P(B|A)P(A)

2 P(AB) = %

=» How to calculate P(z|w) and P(w)?
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Noisy Channel Model — Calculating/Estimating P (w)

e Approach using Maximum Likelihood Estimate (MLE)
m Required: Large text corpus with /V words

_ freq(w)

m Calculate/estimate P(w) with P(w) N

e Example
fi P
m 100 MB Wikipedia dump W frea(w)  PW)

actress 1,135 | 0.0000784
m Total of 14.4M+ words cress 1 | 0.00000. .
caress 3 | 0.00000...
access 1,670 | 0.0001153
across 1,756 | 0.0001213

acres 177 | 0.0000122
Note: The frequencies can widely different across different

corpora (e.g. Wikipedia articles vs. English Literature).
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Noisy Channel Model — Calculating/Estimating P(x|w)

e In general, P(z|w) almost impossible to predict

m Predictions depends on arbitrary factors
(e.g., proficiency of typist, lighting conditions, input device)

e Estimate P(x|w)based on simplifying assumptions (emighan et al., 1990)
m Most misspelled words in typewritten text are single-error

m Consider only single-error misspellings: Insertion, Deletion, Substitution, Transposition
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Noisy Channel Model — Calculating/Estimating P(x|w)
e Definition of 4 confusion matrices (1 for each single-error type)

m Each confusion matrix lists the number of times one "thing" was confused with another

m e.g., for substitution, an entry represents the number of times one letter was incorrectly used

e Underlying definitions for generate confusion matrices

ins|x, y| number of times x was typed as xy T, Y € {a, b,c, ..., Z}
del[a:, y] number of times xy was typed as x
Sub[x, y] number of times 7 is substituted for y

trans[:t, y] number of times xy was typed as yx
count [SU] number of times that &z appeared in the training set

count[a’;, y] number of times that xy appeared in the training set
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Noisy Channel Model — Calculating/Estimating P(x|w)

(inslw;_1,7;]

count|w| ’

if insertion

dellw;—y,w;]
count|w;_1 y,|

if deletion

~»

sublz;,w]
count|w;] ’

if substitution

trans{w;,wi]
\ count|w;,wi1]

if transposition

~»

w; =i-th character in the correct word w

Z; =i-th character in the misspelled word «
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Calculating/Estimating P (x|w)

Noisy Channel Model

t) for Y (correct)

mcorrec

Substitution of X (i

sub[X, Y]
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Source: A Spelling Correction Program Based on a Noisy Channel Model (Kernighan et al., 1990)


http://bolek.ii.pw.edu.pl/~gawrysia/WEDT/kernighan_church_gale.pdf

Noisy Channel Model — Example

Noisy channel probabilities for "acress”

Candidate | Correct Error P(x|w) 4\ 10%*P(x|w)P(w)
Correction Letter Letter

actress
cress
caress
access
across
acres

acres

ca

ac

clct
al#
acl|ca
rlc
elo
esle

ss|s

.000117
.00000144
.00000164
.00000021
.0000093
.0000321
.0000342

=» Choice of candidate for correction: across

.0000231
.00000054
.00000170
.0000916
.000299
.0000318
.0000318

.00078
.0028
.019
2.8
1.0
1.0

35.9
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Noisy Channel Model — Discussion

e Basic limitation: No consideration of additional context
m Model only applicable for non-word errors

m Basic model will always suggest "across" to correct "acress"

"The role was played by an acress famous for her comedic timing."

:

"actress" here the better candidate

-) Language MOdels (next lecture)
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Summary

e RegEx — fundamental and useful tool

e Text Preprocessing — getting your data ready for analysis
m Tokenization

m Stemming / Lemmatization typical very task-dependent!

m Normalization

e Error Handling (soar)

m Focus on single-error misspellings

_ _ already very non-trivial!
m Focus on isolated-word error correction
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Outlook for Next Week: Language Models
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https://unsplash.com/photos/MBqwXZTfkdA

Pre-Lecture Activity from next week

Pre-Lecture Activity for Next Week

e Assigned Task

m Post a 1-2 sentence answer to the following question into the L1 Discussion
(you will find the thread on Canvas > Discussions)

"What do we mean when we talk about
the probability of a sentence?"

Side notes:
e This task is meant as a warm-up to provide some context for the next lecture
e No worries if you get lost; we will talk about this in the next lecture
e You can just copy-&-paste others' answers, but his won't help you learn better




