National University
of Singapore

NUS | Computing

CS4248: Natural Language Processing

Lecture 2 — Strings & Words

N
()
.
=

=1
(S]
()

-
o)

=
N
N
[«))
(3]
(o}
S

o
<)
o)
©
=
o)
c
(1)
-
)

o

=
=}

©
Z
(o)
<
AN
<
n
(&)



Outline

e Regular Expressions

m Basic Concepts
m Relationship to FSA
m Error Types
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Regular Expressions

e Regular Expression — Definition
m Search pattern used to match character combinations in a string

m Pattern = sequence of characters Example: password validation

* Must have a minimum of 8 characters

P Common applications * Must not contain username

. . * Must include at least 1 uppercase
m Parse text documents to find specific character patterns _
* Must include at least 1 lowercase

m Validate text to ensure it matches predefined patterns * Mustinclude at least 1 digit or 1 special character:
~1@#8%2&*_-+="|\()(H]:;""<>,.2/

m Extract, edit, replace, delete substrings matching a pattern

e Two basic search approaches
m Default: match only first occurrence of pattern

m Global search: match all occurrences of pattern (assumed in most following examples)




Basic Patterns «;.r

v

e Fixed patterns floor =» My block has 15 floors, and I live on floor 5.
—_—

5 =» My block has 15 floors, and | live on floor 6.
—

blocks =» My block has 15 floors, and I live on floor 5.

e Special characters (metacharacters)

Explanation

matches any character except line breaks
/—7 match the start of a string
match the end of a string lomyc a.(
&

quehorS —
matches RegEx either before or after the symbol (e.g., floor | floors)

\ matches boundary between word and non-word

— e ps )



Character Classes
ZO“iE - Z 017 24 5‘6763&
e Character class

Defines set of valid characters
" ya A- Q 1

m Enclosedusing"[...]"

m Can be negated: " [ﬂA. 1
nd  glond o\[’ sﬂ“"o
[0 7 91[0-9] =» My block has 15 floors, and I live on floor>6—
M‘f)% (match all sequenc;s-.of 2 digits)

[.,;:] =» My block has 15 floors, and I live on floor 5.

(match all sequences of length 1 that are either a period, comma, etc.)
————

[~a-z] =» My block has_ 15 floors, and | live on floor 5.

P -

(match all sequences of length 1 that are not a lowercase letter)




Predefined Character Classes

e Common character classes with their own shorthand notation (.c., metacharacters)

Alternative Explanation

[ty = \a
\D
\s
\s
\w

\wW

[0-9]
[~0-9]
[ \n\r\t\f]

[~ \n\r\t\f]

[a—zA—ZO—@
[Aa—zA—ZO—@

7

matches any digit

matches any non-digit

matches any whitespace character

matches any non-whitespace character

matches any word character

matches any non-word character

am,ia;.d w.,’;si.,‘%zl wc\IB(_ L'7IOL"~ “_ s



Repetition Patterns Nelt < Nel N\ g

e \ery common: patterns with flexible lengths,eg. N+ = \ad?W}

m  All numbers with more than 2 digits

m All words with less than 5 characters

e Repetition patterns — metacharacters

m Explanation

+ 1 or more occurrences
P

* 0 or more occurrences
—

? 0 or 1 occurrences
{n} exactly n occurrences

between 1 and u occurrences; can be unbounded: {1, } or {,u}



Repetition Patterns — Examples

\d{z,} =

N [onAloa [\t

\b\w{2,4}\£> -

\b[Ff]loor[s]?\b =

My block has 15 floors, and I live on floor 5.

(match all numbers with 2 or more digits)

My block has 15 floors, and I live on floor 5.

(match all numbers with 1 or more digits)

T R 2 4

My block has 15 floors, and I live on floor 5.

(match words with 2 to 4 characters)

My block has 15 floors, and I live on floor 5.

A1y, b

(match occurrences of "floor", either capitalized or not, either in singular or plural)



Groups

Quick quiz: In which case(s) would the RegEx
below fail to correctly match an email address?

e Groups: Organizing patterns into parts C’@b

m Groups are enclosed using "(...)"

m While whole expression must match, groups are captures individually
(a match is no longer a string but a tuple of strings, on for each group)

1 1 34
m Groups can be nested, e.g., (...(...)...((...))...)
(order of groups depends on the order in which the groups "open")

Send an email to alice@example.org for more information.

—T\/Iatch @-symbol

4

1

17_(

\chh: user@example.org
u@j alice

(\w.=T+)@([\w.-]+

AN /

Grou@: example.org

Match 1 or more letters, digits,
underscores, or periods




Backreferences e ey

e Reference groups within a RegEx
m Find repeated patterns (see example below)

m Support only partial replacement of matches

e Example:
m "My mom said | need to pass this test."”

m Goal: Find all words that start and end with the same letter

word boundary

< \4 Match: mom Match: test
p a/—\
%b ([a-zA-Z]) \W*KZ\X Group #1: | mom Group #1: | test
/ \ Group#2: | m Group #2: |t
1 letter 0..* letters, digits, Backreference to the 2nd group
or underscores (=» must be the same letter)

10



Lookarounds

e Special groups — assertions
m Match like any other group, but do not capture the match

m 2 types: lookaheads and lookbehinds

m 2 forms of assertion: positive and negative

I

(?=) positive lookahead A (?=B) =»finds expr. A but only when followed by expr. B
(?!) negative lookahead A (?!B) =»finds expr. A but only when not followed by expr. B
(?2<=) positive lookbehind (?<=B) A =» finds expr. A but only when preceded by expr. B

(2<!) negative lookbehind (2<!B) A =» finds expr. A but only when not preceded by expr. B

11



Lookarounds — Example
A A //4?
e Positive lookahead

m "Paying 10 SGD for 1 kg of chicken seems fair."

m Goal: Extract all kg values (numbers followed by the unit kg)

"Paying 10 SGD for 1 kg of chicken seems fair.

\d+ (?=\s*kqg) -> "Paying 10 SGD for 1.5 kg of chicken seems fair.

— 77 ~
oelionct Paying 10 SGD for 1/5@_ kg of chicken seems fair.

"Paying 10 SGD for 1%9 of chicken seems fair.
P
[0-9.,]1*[0-9]+ (?=\s*kq) -5 "Paying 10 SGD for 1.5 kg of chicken seems fair.

y AA /22 Paying 10 SGD for #3500.00 kg of chicken seems fair.
o —

12
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Relationship to Finite State Automata

e Equivalence

m Regular Expressions describe Regular Languages
(most restricted types of languages w.r.t Chomsky Hierarchy)

m Regular Language = language accepted by a FSA

Example: FSA that accepts the Regular Language
described by the Regular Expression I(o+])+

CCc e'oxl"\b
s\t

Regular Expression

l(o+l)+

pe————

@ Regular Language
{lol, loooal, lolol, looolal, ...}

L]

OUnboocp, s

Chomsky Hierarchy
(Source: Wikipedia)

recursively enumerable

context-sensitive

context-free



Relationship to Finite State Automata

e Basic equivalences

a <> ()2
a b
b o (@) (o )—"—(e)
iy

L a
alb  —
a
)
¢ e~ &



In-Lecture Activity (10 mins) & of

Cc o
: o GC o
e Task: Find a RegEXx describing the FSA below ac Al
m Post your RegEx to Canvas > Discussions ot cc oA |

(individually or as a group; include all group members' names in the post)

m Optional: There are more than one correct answer = Why? a

o1&
O C (é&)*c* d‘l" "/ 1S aboy
(b )e e ¢+ oIk g =
A

16
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Error Types — What Can Go Wrong

e Example: Find all occurrences of article "the"

m Naive approach: "the" (fixed pattern)

incorrect matches

Quick quiz: What would be a
better RegEx for this task?

NG [TE L \G
NG (L [The )\

correct matches

L/
There's nkher way to learn the power of Reqular El\pressmns
than to use them reqularly. The productivity is worth the & effort.

missing match

18



Error Types

e 2 basic types of errors

Matching strings that we should not have matched

(e.g., other, theology, weather, bathe, mother)

Not matching things that we should have matched
(e.g., THE)

}4
}»

False Positives
(Type | Errors)

False Negatives
(Type Il Errors)

19



Error Types — Observations

e Many contexts deal with these 2 types of errors, eg:

m Medical testing (e.g., ART test is positive but person is not infected with COVID = false positive)

m Information retrieval (e.g., a Web search is missing a relevant page = false negative)

m Document classification (e.g., an abusive tweet has be classified as positive =» false positive)

e —

o RedUCing errors false nfgative false B?sitive

r N\ r N\
m Both error types not always equally bad (infected person tests negative vs. healthy person test positive)

m Reducing False Positives and False Negatives often in conflict
(reducing False Positives often increases False Negatives, and vice versa)

20



Regular Expressions — Summary

e Know their powers
m Extremely useful tool for many

(low-level) text processing tasks
(e.g., data preprocessing, tokenization, normalization)

m Important skill for anyone
working with strings or text

e Know their limitations
m Regular Expressions represent hard rules
————

m Higher-level text processing task generally
require statistical models ("soft" rules)

=» Machine Learning classifiers

WHAT ¢ives PEOPLE
FEELINGS OF POWER

MONEY

STATUS

KNOWING
REGEX

21
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f

Tokenization

e Tokenization: splitting a string into tokens =» vocabulary et of ail unique tokens)
m Token = character sequence with a semantic meaning

(typically: words, numbers, punctuation — but may differ depending on applications)

m Very important for step for most NLP algorithms
(tokenization errors quickly propagate up =¥ "garbage in, garbage out")

e 3 basic approaches

character-
based

subword-
based

word-
based

Sl hlel|'|s
She 's
She \ 's

cliliey

ariv

driving

ing

g

flal|s|t

fast

faster

e

r

er

Character-based tokenization
trivial (e.g., using Regex: .)

tlhi an

than

=

al |l olwle|d

allow ed

allowed

23



Quick quiz: What is an important

Tﬂkenlzatlﬂn — Word'BaSEd assumption for the 2 approaches?

Lo
PR ol %viu
e 2 intuitive approaches (soived using Regex) Lo lortes [:u.
m Match all words, numbers and punctuation marks > \w+|\d+|[,.;:]

m Match boundaries between "words" and "non-words" = (2=\W) | (?<=\W)

\w+ |\d+|[,.;:] => NLP is fun, and there is so much to learn in 13 weeks.

(2=\w) | (2<=\w) =>  NLP||s|[un|| end|here||is| |so| Imuchl [to| fearn| |in| |t 3| Weeks|

24



Tokenization — It Quickly Gets Tricky

Multiword phrases
Common contractions

Hyphenations

Acronyms, names, etc.

Special tokens

| just came back from New York City.

S
I'm not home, so do@ call.

—
NLP is a well-defined but no@ivia/ topic.

| watched a C++ documentary or@

My email is chris@nus.comp.nus.sq :0)

L —

T ¥

QDMO\L’ca,.S

-

S

RegEx used:
\wt[\d+ | [,.7:]

25



Example: spaCy Tokenizer

“Let’s go to N.Y.!”

—
7 Let’s go | to NY.!”
T :
“lllet | 's | go to N.Y.!”

1 1 1 |
“IlLlet|| 's|| go || to N.Y.! &
| | | | | — |
“'let | ’'s || go to |[|NY. || !]I]”

le |C | (& e e e &
“IlLlet|| ’s|| go || to NY. |l ]]”

Source: https://spacy.io/usage/spacy-101

EXCEPTION
EXCEPTION

(1) Split string on whitespace characters

(2) From left to right, recursively check substrings:

e Does substring match an exception rule?
(e.g., "don't" — "do", "n't", but keep "U.K.")

e Can a prefix, suffix or infix be split of?
(e.g., commas, periods, quotes, hyphens)

Substring checks based on
e Regular Expressions
e Hand-crafted rules / patterns

26



Example: Chris's Tokenizer

@/B

@ B

Sequential labeling of characters

Label all whitespace characters

«

Label all unicode characters

«

Label all emoticons

«

Label all special token types

«

Label all punctuation marks

«

Label all all alphanumeric characters

=» Tokens = Substrings with adjacent characters with the same labels

27



Tokenization — Language Issues

e French
m Different uses of apostrophes and hyphens (compared to English)

direct article indicates imperative
/\ [l
I'ensemble donne-moi
“the whole" / "all" "give me!”
e German

m \Very common: compound nouns

Arbeiterunfallversicherungsgesetz

"worker injury insurance act”

-» 1 token or 2 tokens?

=» important: compound splitter

28



Tokenization — Language Issues

e Languages without whitespaces separating words

Chinese 5 R M| E B (ETEIE B| & S| T B A
" Sharapova now lives in us southeastern Florida "
Japanese I+ —F 500 (XIFEHRAF B D-HEEH

e multiple syllabaries \ /

|

e multiple formats for Katakana Hiragana Kanji

dates and amounts

f£p500K(fﬁ'96,c/)10075F )

Romaniji

H

29



Tokenization — Word Segmentation of Chinese Text

e Baseline algorithm: Maximum Matching

d
SR B S ER RSO HE R A

N 4
LB E B EEREHHS BiX

Sharapova
\ ¢
S RLREE P B X ERE SN BT BiX

¥
S I B 2 EAR A S HS B3R

now

(4)

Place a pointer at the
beginning of the string

Find longest word in dictionary that
matches string starting the pointer

Mover the pointer over
the word in the string

Goto #2 to process the whole string

30



Tokenization — Maximum Matching A oedraic,

e Surprisingly good performance on Chinese text ‘# LU(T o,
U (o

(even better performance with probabilistic methods or extensions)

—LL L()e*\ IZCH'\

e Generally does not work for English text

correct . the table down there
thetabledownthere

Maximum Matehing = o ota bled own there

31



Tokenization — Subword-Based

e Subword-based tokenization
m So far: a priori specification of rules (e.g., Regex) what constitutes valid tokens

m Now: use data to specify how to tokenize

S /.)it,
e \Why do we want to do this? 7 ™
m Out Of Vocabulary (OOV) words

(word/token an NLP model has not seen before) -» problematic when building statistical models

m Very rare words in corpus
Obamacare kiasuism chillax

pamplos: o\

frequent tokens

=* Goal: Split OOV and rare words into (some) known & frequent tokens

32



Tokenization — Subword-Based

e Different algorithms for subword tokenization
m Byte-Pair Encodinnigram Language Model Tokenization, WordPiece, etc.

e Different approaches, similar 2-parts setup

(1) Token Learner
Takes raw training corpus and induces a vocabulary (i.e., set of tokens)

(2) Token Segmenter
Takes a raw text and tokenizes it according to vocabulary

33



Tokenization — BPE Token Learner

Quick quiz: What happens

if k=0 or k== ?
< \
Corpus: lowllowllowt low low(lower{lower{newest hewest newest ([,
newest/newest hewest| WId%St’WId%_St\ widest|longer bas:'d‘b Lo ~
“ loccrd

special end-of-word token

.Initialize vocabulary (e.g., {'d’, e’ 'q’, ", T, 'n’, ‘o', 'r', 's’, 't', 'W/ D)
REPEAT -
Find the 2 tokens most frequently adjacent to each other (e.g., ‘e’, 's)
Add a new merged token ‘es’to vocabulary
Replace every adjacent 'e’ 's’in corpus with ‘es’
UNTILmerges have been done

\

parameter of algorithm

34




Tokenization — BPE Token Learner

corpus representation vocabulary

(6) newes ¢t l d,e,g,i,l,n,o,r,s,t,w,_

merges

@ most frequent pair: e &
——

corpus representation vocabulary

(9 ogcurrences)

newesgt d, e g,1,1,n,0,1,8,t,w,_,es

wides t (e, s)

(®

5 low merges
(¥

2

1

@ most frequent pair: es & t@ccurrences)

35



Tokenization — BPE Token Learner

corpus representation

6

= N|[W|O

n e w est

corpus representation

6

= N|[W | O

newest_

1l ow

w i d est_

l ower

longer

vocabulary

d,e,g,1,1,n,0,1,s,t,w, ,es,est

merges
(e, s), (es, t)

@ most frequent pair: est & _ (9 occurrences)

vocabulary

d, e g,1,1,n,0, 1,8, t,w,_,es,est,est

merges
(e, s), (es, t), (est, )

@ most frequent pair: 1 & o (8 occurrences)

36



Tokenization — BPE Token Learner

corpus representation

6 new est
5 lo w
o w _
3 w i d est
2 lower
2 _
1 longer

corpus representation

6 new est

5 low

3 w i d est

2 low e r

1 longer

vocabulary

d,e,g,1,1,n,0,r,s8,t,w,_,es,est,est ,1lo

merges
(e, s), (es, t), (est, ), (1, 0)

@ most frequent pair: 1o & w (7 occurrences)

vocabulary

d,e,9,1,1,n,0,1r,s8,t,w,_,es,est,est , 1o, low

merges
(e, s), (es, t), (est, ), (1,0), (1o, w)

@ most frequent pair: n & e (6 occurrences)

37



Tokenization — BPE Token Learner

vocabulary

merges

L

vocabulary

merges

L

vocabulary

merges

L

d,e,g,1i,1,n,0,1,s,t,w,_,es,

(e, s), (es, t), (est, ), (1,0), (1o,

d,e,g,1i,1,n,0,1,s,t,w,_,es,

(e, s), (es, t), (est, ), (1,0), (1o,

d,e,g,1i,1,n,0,1,s,t,w,_,es,

(e, s), (es, t), (est, ), (1,0), (1o,

est,est , lo, low, ne

w), (n,e) —> Sequece, ol o g\

est,est , lo, low, ne, new

w), (n, ), (ne, w)

est,est , lo, low, ne, new, newest _

w), (n, e), (ne, w), (new, est )

38



Tokenization — BPE Token Segmenter

=D

low

(er,

vocabulary d, e, g,

i,l,n,o,r,s,t,w, ,es,est,est ,lo, low, ne, new, newest |,
. , . - - —
,er,er ,wi,wid,widest , lower , lon, long, longer
et A=t

merges (<3), (e¥vt), (\,sﬁ') Do), (Besw), (n, efne, w) (nemt ), (Tmig,- ), (e, rf,"
), w1d>§st )FQo(w' erL (lp) (lones), (Lowe, ér/[)

Tokenize/segment
"newer”

|

nlelwle|rl Z 3
(n, e
ne wer X

Run each merge in orde
they have been learned

(ne, w) &

non n

new e r % / -» tokens: "new", "er_
(e, x)

(exr, )
IR

39



Tokenization — Summary .

e Tokenization as low-level NLP task
m Challenges: important, non-trivial, language-dependent

m Particularly tricky for informal language (e.g., social media)

e 3 basic approaches

m Character-based (trivial to do but often not suitable — individual characters generally carry no semantic meaning)
m Word-based (a priori specification of rules; language-dependent; problem: OOV/rare words)

m Subword-based (tokenization learned from data — tokens are often morphemes!)

e Practical consideration (when using off-the-shell word-based tokenizers)
m What is my type of text (e.g., formal or informal)? Are there special tokens (e.g., URLs, hashtags)?

m Try and assess different tokenizers — very, very last resort: write your own tokenizer

40
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. . o eli g\
Normalization Coy “\m

Germany

e Goal: Convert text into a canonical (standard) form GERMANY | 9ermany
m Remove noise / "randomness" from text
m Affects characters, words, sentences, documents USA
i — ’ US.A USA
US of A
e Implicit definition of equivalence classes tonight
m Suitable normalization steps depend on task/application tonite tonight
2N8
\ense
\ connect
Alternative to equivalence classes: asymmetric expansion Y| connects
connected connect
Example: Web Search (utilize case of search terms) connecting
— connection
Entered term Searched terms (poleq { A
window - window, windows ) .
:-) smile
windows -> Windows, windows, window :O)
Windows -> Windows




Normalization — Case Folding

e \When to fold?

m Common application: Information Retrieval
(e.g., Web search where must users type only in lowercase anyway)

m Potential problems: Bush vs. bush, MOM vs. mom, Cloud vs. cloud, etc.

(potential exception: upper case word in mid sentence?)

e \When NOT to fold?

m NLP tasks where case of letters or words are important features

m Examples: Named Entity Recognition, Machine Translation

They sent us a card from the US during their vacation.

\ /

Distinction important for NER and MT!

43
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Normalization — Stemming & Lemmatization

e Motivating example:

"dogs make the best friends” vs. "a dog makes a good friend"

= Very similar semantics but (very) different syntax

e Common reasons for variations of the same word
m Singular vs. plural form (mainly of nouns)

m Different tenses of verbs =» Can we normalize words to abstract

L from such variations?
m Comparative/superlative of adjectives

45



Normalization — Stemming

Examples
(alternatives reflect results from different stemmers)

e |dea of Stemming
m Reduce words to their stem mm

. . t t
m Approach: crude chopping of affixes cats ca
based on rules (= language dependent) running run
m Different stemmers apply different rules phones phon(e)
presumably presum
1] 1] f
e Characteristics orying cryler

m Pro: fast + no lexicon required
——— went went

-ﬂ Con: stemmed word not necessarily ,

WOor. wor.
a proper word (i.e., not in dictionary) orse ors

best best

mice mic(e)

46



Normalization — Stemming: Porter Stemmer

e Porter Stemmer — most common stemmer for English text
m Simple, efficient + very good results in practice

| | | o itn (
e Series of rewrite rules that run in a cascade

m Output of each pass is fed is input to the next pass

m Stemming steps if a pass yields no more changes

sses — ss e.g.: possesses —* posSsess, classei — class
tional — tion e.g., optional — option, fictional — function
ies — i e.g., cries — cri, tries — tri
stem must contain vowel — (*V*)ing — € e.g.: sing — sing, singing — sing, talking — talk
stem must contain >1 chars —» (mM>1)ement — ¢ e.g., replacement — replac, cement — cement

More details: https://tartarus.org/martin/PorterStemmer/




Normalization — Lemmatization

e Idea of Lemmatization
m Reduce inflections or variant forms to base form

m Find the correct dictionary headword form

m Differentiates between word forms: nouns (N) verbs (V) adjectives (A)

m Lemmatized (N) Lemmatized (V) Lemmatized (A)

running running running
phones phone phone phones
went went go went
worse worse worse bad

mice mouse mice mice



Normalization — Lemmatization: Characteristics

e Pros
m Lemmatized words are proper words (i.e., dictionary words)

m Can normalize irregular forms (e.g., went — go, worst — bad)
[

e Cons
m Requires curated lexicons / lookup tables + rules (typically)

m Requires Part-of-Speech tags for correct results

m—

m Generally slower as stemming
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Normalization — Stemming & Lemmatization

e Back to our motivating example

Raw: "dogs make the best friends” "a dog makes a good friend"

Stemmed: "dog make the best friend" "a dog make a good friend"
P

Lemmatized: "dog make the q_qo,d friend" "a dog make a good friend"

e
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Normalization — Final Words

e Canonical form also effects tokenization, e.g.: Penn Tresbank Tokenizer
m Separate out clitics (e.g., doesn't » does n't, John's = John 's)

m Keep hyphenated words together

m Separate out all punctuation symbols

e Other common normalization steps

m Removal of stopwords (e.g., a, an, the, not, and, or, but, to, from, at) g {
- ocle - che pe— (y(,_\

m Removal of non-standard tokens (e.g., URs, emojis, emoticons)
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Quick Quiz

A [ Case-folding }

Which preprocessing step would B [ Stemming }

negatively affect sentiment analysis
most obviously (arguably)?
—_—
C [ Lemmatization }
/

j:/‘"" L’°I’(7 V> 1 — tol [“'W‘y D [ Stop word removal }
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Sentence Segmentation

e Sound like a simple task but...

] Period@ can be quite ambiguous (e.g., "1.25","u.s.A", "Dr")y — "?", "I" relatively unambiguous
A ——

m Poor punctuation in informal text (common: missing whitespaces, missing capitalization)

=» RegEx for segmenting sentences quickly become very complex

Example RegEx: (?<!'\w\.\w.) (?<![A-Z][a-z]\.) (?<=\.]\?)\s

(Source: Stackoverflow)

e Alternative: binary classifier
m Consider each period "." in a text

m Classify: EndOfSentence or NotEndOfSentence

=?» Possible approaches: handwritten rules, set of RegEx, machine learning

54



Quick quiz: What are some

Exam p|B: S| mp|e RU |BS (represented as a binary Decision Tree) common cases where this

classifier would fail?

Lots of blank lines

after period "."? ® * .
e ol ooty
EOS More than one -
nn [Ué Lc)cr(c’. ull
space after "."? .
First character after Word before "." is a
""is a letter? know abbreviation?
YE‘V \q‘o YES / \NO
First letter after "." First character after | N-EOS EOS
is capitalized? ""is a digit?

AR

N-EOS N-EOS o



Many Other Features Conceivable

e Example: numerical features
m length of word before / after period "."

m Distance (in #chars) to next punctuation mark

m Probabilities derived from a dataset
(e.g., probability of with "." occurs at the end of sentence)

Side note: In informal text (e.g., social media) people often use emoticons
or emojis to separate sentences, making this task even more complicated.
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by
Spelling Errors ool 5l

R
] ) actress
i A )
1. Non-word error detections acress 2] -

m Basically, word is not found in dictionary

access

[ ] Example: detecting graffe (misspelling of giraffe)

2. Isolated-word error correction caress
m Consider word in isolation (i.e., without surrounding words) —

m Example: correcting graffe to giraffe

Increasing Complexity

3. Context-sensitive error detection & correction
m Consider surrounding words to detect and correct errors

m Important for "wrong" words that a spelled correctly

v m Examples: there vs. three, dessert vs. desert, son vs. song



Spelling Errors — Gommon Patterns

e Observation
m Most misspelled words in typewritten text are single-error

m Damerau (1964): 80%, Peterson (1986): 93-95%
—_— o ——
e Single-error misspellings
m Insertion (e.g., acress vs. acres)
m Deletion (e.g., acress vs. actress) For non-word errors:
> =» Good candidates are orthographically similar

m Substitution (e.qg., acress vs. access) - Minimum Edit Distance

m Transposition (e.g., acress vs. caress)
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Minimum Edit Distance (MED)

e Minimum Edit Distance between 2 strings s, and s,
m  Minimum number of allowed edit operations to transform s, into s,

m Allowed edit operations: Insertion, Deletion, Substitution, >< | Nt covered hors to

keep examples simple

e Example
m s ="LANGUAGE"

m S,="SAUSAGE"

_S (g D Dl./ A v C o

LANGU*AGE MED if all operations cost 1 = 4
- Alignmentof MED: | | | | | | | | | MED if Substitution costs 2, 5

SA* * USAGE Insertion 1, Deletion 1

—
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Minimum Edit Distance — Calculation

e Problem formulation: Find a path . sequence of edits) from start string to final string
m Initial state: the word being transformed (e.g., "LANGUAGE")

m Target state: the word being transformed into (e.g., "SAUSAGE")
m Operators: insert, delete, substitute

m Path cost: aggregated costs of all edits

LANGUAGE
=¥ Potentially huge search space
| delete | | insert | | substitute |
e I AW =>» Naive navigation of all path impractical
ANGUAGE SLANGUAGE SANGUAGE
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Minimum Edit Distance — Calculation

e Observations
m Many distinct paths end up in the same state

LANGUAGE \\

| delete | ldsert | substltute |
< !
ANGUAGE SLANGUAGE SANGUAGE

/\

=» No need to keep track of all paths

= Only important: " est" path to each revisited state = Solve using Dynamic Programming

(best in terms of costs, not just number of operations!) solving problems by combining solutions to subproblems
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Minimum Edit Distance — Calculation

(AVG(GAG
e Input: 2 strings

m Source string X of length 7

O

m Target string Y of length T
< —

first i chars of X firstjchars of Y

SAUSAGe l l
e Define D(i,j) as MED between X[0..i and Y[0..j]

Cm———

- MED between X andY is thus D(n,m)

e — —

e Bottom-up approach of Dynamic Programming
m Compute D(i, j) for small ¢, j (base cases)

m Compute D(i, 5) for largeri, jbased on previously computes D(i, j) for smaller ¢, 5



Minimum Edit DiStanGe CaICUIation Assumptionsforcosts

LA ~ ™ 5 agg,
e Initialization of bases cases  “’* DY(SES

| D(z’) O) — ¢ (getting from X|0..i| to empty target string requires i deletions)

] D(O, j) = j (getting from empty source string to Y'[0..5] requires j insertions)
S AU D(G4) Sy (b erte)

e ForO<i<nand 0<j3<m

D(Z o 17 ]) + 1 Delete Complexity analysis
D(’L,]) = min D(ij — 1) + 1 Insert Space:  O(nm)

D(i—1. 7 —1 2, ifXli]| # Ylj] Substitute
b H{o, if X[ = Y]

Time: O(nm)




Minimum Edit Distance — Calculation Example

E 8 {D(z’l,j)Jrl Delete A conf

G 7 D(%]) = man D(Z7] B 1) + L lncgr ; ; 1 Substitute

Al G pii—15 =1+ Jy Y
O(Co) (| 5 — T

G| 4 1 A7 =

N | 3 7 K

A 2 t 4

L 1 "f”:)wa,, y

£ 0] 1| 2 3| 4] O 6 | 7

#

SAUJ?)AGE
Al
O

Q) 66



Ay

a—
p—

ME v

Calculation Example

Minimum Edit Distance

4

3

(2

L 2

# | S|A|U|S|A |G |E

A

L
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Minimum Edit Distance — Backtrace & Alignments

e Current limitation
m Base algorithm only returns the MED

m Often important: alignment between strings

b

How do we get this?

e Keep track of backtrace
m Remember from which "direction" } Keep set of pointers
we entered a new cell for each 7,

m At the end, trace path from upper right
corner to read of alignment

LANGU *AGE
EEEE
SA* *USAGE

Small extension to base algorithm:

LEFT |Insert
PTR(Z, ]> = { DOWN Delete
DIAG Substitute

Note: Backtraces are generally not unique =¥ different alignments for the same MED possible
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Minimum Edit Distance — Backtrace & Alignments

E| 8] «19 18 171 /18 17 16 /5
G| 7| /<8 17 16 /<17 16 v — 6
Al 6| <7 16 15 /<16 /5 — 6 — 7
U| 5| ,«16 15 a «5 — 6 —1 7 /<18
G| 4| /<5 74| /15| /16 /<17 6 27
N| 3] «]4 N 1| 15| 16| 17| /<18
Al 2 =3 g2 — 3 —4] /<5 — 6 — 7
L | 1|l /13| /«ld| /el /<16 /17| /18
# 1 0 f( LN 2 3 4 5 6 7
#/ SRN_ A U S A G E
ANGU *AGE —
— BN i
Quick quiz: Why do we choose A* *USAGE

the diagonal path here?
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Minimum Edit Distance — More Examples

e Biology: Align 2 sequences of nucleotides

AGGCTATCACCTGACCTCCAGGCCGATGCCC

TAGCTATCACGACCGCGGTCGATTTGCCCGAC

15

ZIT]
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L LTh
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| ) R P o

70




In-Lecture Activity (10 mins)

e Task: Compute the MED and alignment between "NUS" and "TRUST"

m Post your MED (Levenshtein) and alignment to Canvas > Discussions
(individually or as a group — add all group members' names to the post)

S 3 e Try to complete the table for this task
U 2 (probably not needed as the words are very short)
N 1 e Some of you can share their solution
# 0 1 2 3 4 5 Example alignment (but bad one!)
# 4 & R | U S T NUS * o o o
Del @ Yo ** *TRUST
< US %
A\ UsST1T
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In-Lecture Activity (10 mins)

e Solution
S 44| )5 14 B — 4
U s3] 4 - — 4 «~5
N P3| 4| 15| 16
2 / 2 3 1 5
T R U S T
L/ S U) X *N U S *
- ous BN
TR UST



Minimum Edit Distance — Other Uses in NLP

e Evaluating Machine Translation and speech recognition

e.g., How similar are 2 translations?

Reference: Spokesman confirms * senior government adviser was shot *

Prediction: Spokesman  said the senior * adviser was shot dead

e Named Entity Extraction and Entity Coreference

"We stayed at the * Merchant Court prior to a cruise”

"The Swissotel Merchant Court is a great place to stay in Singapore”

|

Referring to the same entity?
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Minimum Edit Distance — Extensions

e \Weighted Minimum Edit Distance eg.:

m Spell Correction: some letters are more likely to be mistyped than others

m Biology: certain kinds of deletions or insertions are more likely than others

=» Generalization of algorithm
m Application-dependent weights (i.e., costs for edit operations)

Initialization of base cases: Recurrence relation:

D(0,0) = 0 D(i—1,5) + del(X[i])
D(i,0) = D(i — 1,0) + del(X[i]), for 1 <i<mn D(i,j) =min § D(i,j — 1) + ins(Y[7])
D(0,5) = D(0,j — 1) +ins(Y[i]), for 1 <i<m D(i—1,j—1) + sub(X[i],Y[i])
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Minimum Edit Distance — Extensions

e Needleman-Wunsch
m No penalty for gaps (*) at the beginning
or the end of an alignment

m Good if strings have very different lengths

e Smith-Wasserman
m Ignore badly aligned regions

m Find optimal local alignments within substrings
(Levenshtein finds the best global distance and alignment)

Common application:
Alignment of nucleotides sequences
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Where We are Right Now

e Given a misspelled word, generate suitable candidates for error correction
m 80% of errors are within minimum edit distance 1

m Almost all errors within minimum edit distance 2 across
m Covers also missing spaces and hyphens
(e.g., thisidea vs. this idea; inlaw vs. in-law) reress actress
e Still missing: Which is the most likely candidate? M
m Ranking of candidates to show top candidates first VED=2 acres

m Support for automated spelling correction caress

=» Noisy Channel Model

Idea: Assign each candidate a probability
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Noisy Channel Model — Intuition

intended word 1)
=

AV4

e.g.: actress

P(w)

Noisy ChannV

P(x[w)

e.g.: P(acress|actress)

Probability that word w
gets misspelled as &

e

observed word

e.g.. acress

P(x)

Decoding: Observing error ;, can we predict correct word w?
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Noisy Channel Model — Bayesian Inferencing

Yy
Given an observation ' of a misspelled word, Quick refresher: Bayes' Theorem
find the correct word 1w: el 1) = AP S
:ﬁ:‘ oc resg P(A, B) = P(B|A)P(A)
f&} = argmax P(q\;}‘x{ = P(A|B)P(B) = P(B|A)P(A)
weV
_ P(B]A)P(4)
X - P(A|B) = —5E
N P(2|w)P(w)
W = argmax
weV B(’Q
=
w = argmax P(x|w)P(w) -» How to calculate P(z|w) and P(w)?

welV -



Noisy Channel Model — Calculating/Estimating P (w)

e Approach using Maximum Likelihood Estimate (MLE)
m Required: Large text corpus with N words - C Oltm I

_ freq(w) g

m Calculate/estimate P(w) with P(w) N

e Example
fi P
m 100 MB Wikipedia dump W frea(w) | PW)

actress 1,135 | 0.0000784
m Total of 14.4M+ words cress 1 | 0.00000. ..
caress 3 | 0.00000...
access 1,670 | 0.0001153
across 1,756 | 0.0001213

acres 177 | 0.0000122
Note: The frequencies can widely different across different

corpora (e.g. Wikipedia articles vs. English Literature).
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Noisy Channel Model — Calculating/Estimating P(x|w)
re»’\‘ , qdlre,

e In general, P(z|w) almost impossible to predict

m Predictions depends on arbitrary factors
(e.g., proficiency of typist, lighting conditions, input device)

e Estimate P(z|w)based on simplifying assumptions (kemighan etal., 1990)
m Most misspelled words in typewritten text are single-error

m Consider only single-error misspellings: Insertion, Deletion, Substitution, Transposition
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Noisy Channel Model — Calculating/Estimating P(x|w)

e Definition of 4 confusion matrices (1 for each single-error type)
m Each confusion matrix lists the number of times one "thing" was confused with another

m e.g., for substitution, an entry represents the number of times one letter was incorrectly used

e Underlying definitions for generate confusion matrices

ms|x, y] number of times 1 was typed as vy T,y < {a, b,c, ..., Z}
— —_—

del[a:, y] number of times xy was typed as . q

sublz, y] number of times 7 is substituted for ¥ ‘S""( clace &+

trans[:t, y] number of times xy was typed as yx
count M number of times that v appeared in the training set

count[a’;, y] number of times that xy appeared in the training set
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Noisy Channel Model — Calculating/Estimating P(x|w)

(inslw;_1,7;]

- count|w;]

if insertion

~»

dellw;—y,w;]
count|w;_1 |

ol 7
—— sub[:z:z',wi

trans{w;,wi]
\ count|w;,wi 1]

if deletion

~»

if substitution

~

if transposition

~»

w; =i-th character in the correct word w

Z; =i-th character in the misspelled word
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Noisy Channel Model — Calculating/Estimating P(x|w)

] = ubstitution of X (incorrect) for Y (correct)

sub[X,
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Noisy Channel Model — Example

e Noisy channel probabilities for ' acress

‘7(‘@,*) o F[K/w)P{w>

7<)

Candidate | Correct Error 09*P(x|w)P(w)
Correction Letter Letter

actress c|ct .000117
cress a al# .00000144
caress ca ac acl|ca .00000164
access c r ric .00000021
across o e elo .0000093
acres S esle .0000321
acres S ss|s .0000342

=» Choice of candidate for correction: across

P —

.0000231
.00000054
.00000170
.0000916
.000299
—_—

.0000318
.0000318

.00078
.0028

.019
2.8
1.0
1.0

35.9
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Noisy Channel Model — Discussion

e Basic limitation: No consideration of additional context
m Model only applicable for non-word errors

m Basic model will always suggest "across" to correct "acress"
——

"The role was played by an acress famous for her comedic timing."

:

"actress" here the better candidate

-’ Language MOdels (next lecture)
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Summary

e RegEx — fundamental and useful tool

e Text Preprocessing — getting your data ready for analysis Sra of Lo,

m Tokenization a

m Stemming / Lemmatization typical very task-dependent!

.Spfl\l’scacg °(l wcpj

m Normalization
(+ WML%QI,‘)

e Error Handling (soar)

m Focus on single-error misspellings

_ _ already very non-trivial!
m Focus on isolated-word error correction

88



Pre-Lecture Activity for Next Week

e Assigned Task

m Post a 1-2 sentence answer to the following question into the Canvas Discussion
(you will find the thread on Canvas > Discussions)

"What do we mean when we talk about
the probability of a sentence?"

Side notes:
e This task is meant as a warm-up to provide some context for the next lecture
e No worries if you get lost; we will talk about this in the next lecture
e You can just copy-&-paste others' answers but his won't help you learn better
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Solutions to Quick Quizzes

e Slide 9

m The given RegEx is very simple and would match substrings that are not email addresses
m Examples: a@b, ...@---

e Slide 10

m The outer group is not needed and can be removed

m However, we then need to change the numbering: \b ([a-zA-Z]) \w*\1\b
e Slide 18

m Forexample: \b[Tt]he\b or \b (the | The) \b

m Note that this would fail to match "THE" which might or might not be a good thing
e Slide 24

m Words/tokens are generally separated by whitespace characters

m OK-ish assumption for English but not for many other languages
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Solutions to Quick Quizzes

e Slide 34

m k=0 -> BPE "degenerates" to character-based tokenization

m k=< =» BPE "degenerates" to word-based tokenization
e Slide 52: D
m Words such as "not”, "n't", "never”, etc. are typically considered stop words

m However, these word often flip the sentiment polarity, e.qg., "I'm happy.” vs "I'm not happy.”

e Slide 55

m Obvious cases: unknown abbreviations (maybe "efc.")

m More informal writing style, e.g., using ellipses: "l think...well...the movie was good."

e Slide 69
m Choosing the "diagonal path" yields the shortest alignment (typically preferred)
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