CS4248: Natural Language Processing

Lecture 2 - Strings \& Words

Outline

- Regular Expressions
- Basic Concepts
- Relationship to FSA
- Error Types
- Corpus Preprocessing
- Tokenization
- Normalization
- Stemming / Lemmatization
- Segmentation
- Word error handling
- Spelling Errors
- Minimum Edit Distance
- Noisy Channel Model

Regular Expressions

- Regular Expression - Definition
- Search pattern used to match character combinations in a string
- Pattern = sequence of characters
- Common applications
- Parse text documents to find specific character patterns
- Validate text to ensure it matches predefined patterns
- Extract, edit, replace, delete substrings matching a pattern

Example: password validation

```
* Must have a minimum of 8 characters
* Must not contain username
* Must include at least 1 uppercase
* Must include at least }1\mathrm{ lowercase
* Must include at least }1\mathrm{ digit or 1 special character:
    ~!@ #$%^&*_-+ = `\\(){}[]:;"'<>,.?/
```

- Two basic search approaches
- Default: match only first occurrence of pattern
- Global search: match all occurrences of pattern (assumed in most following examples)

Basic Patterns

- Fixed patterns

$$
\begin{aligned}
\text { floor } & \rightarrow \text { My block has } 15 \text { floors, and I live on floor } 5 . \\
5 & \rightarrow \text { My block has } 15 \text { floors, and I live on floor } 5 . \\
\text { blocks } & \rightarrow \text { My block has } 15 \text { floors, and I live on floor } 5 .
\end{aligned}
$$

- Special characters (metacharacters)

Character	Explanation
\cdot	matches any character except line breaks
\wedge	match the start of a string
$\$$	match the end of a string
$\boldsymbol{\jmath}$	matches RegEx either before or after the symbol (e.g., floor \mid floors $)$
$\backslash b$	matches boundary between word and non-word

Character Classes

- Character class

- Defines set of valid characters

■ Enclosed using " [....]"
■ Can be negated: " [^. . .]"

$$
\begin{aligned}
{[0-9][0-9] } & \rightarrow \quad \begin{array}{l}
\text { My block has } 15 \text { floors, and I live on floor } 5 . \\
\text { (match all sequences of } 2 \text { digits) }
\end{array} \\
{[., ;:] } & \rightarrow \quad \begin{array}{l}
\text { My block has } 15 \text { floors, and I live on floor } 5 . \\
\text { (match all sequences of length } 1 \text { that are either a period, comma, etc.) }
\end{array} \\
{[\wedge \mathrm{a}-\mathrm{z}] } & \rightarrow \quad \begin{array}{l}
\text { My block has } 15 \text { floors, and I live on floor } 5 . \\
\text { (match all sequences of length } 1 \text { that are not a lowercase letter) }
\end{array}
\end{aligned}
$$

Predefined Character Classes

- Common character classes with their own shorthand notation (i.e., metacharacters)

Class	Alternative	Explanation
\d	$[0-9]$	matches any digit
\D	$[\wedge 0-9]$	matches any non-digit
\s	$[\backslash n \backslash r \backslash t \backslash f]$	matches any whitespace character
\s	$[\wedge \backslash n \backslash r \backslash t \backslash f]$	matches any non-whitespace character
\w	$\left[a-z A-z 0-9 _\right]$	matches any word character
\w	$\left[\wedge a-z A-z 0-9 _\right]$	matches any non-word character

Repetition Patterns

- Very common: patterns with flexible lengths, e.g::
- All numbers with more than 2 digits
- All words with less than 5 characters
- Repetition patterns - metacharacters

Pattern	Explanation
+	1 or more occurrences
$*$	0 or more occurrences
$?$	0 or 1 occurrences
$\{\mathrm{n}\}$	exactly n occurrences
$\{1, \mathrm{u}\}$	between 1 and u occurrences; can be unbounded: $\{1$,$\} or \{, \mathrm{u}\}$

Repetition Patterns - Examples

$\backslash \mathrm{d}\{2,\} \quad \rightarrow \quad$ My block has 15 floors, and I live on floor 5. (match all numbers with 2 or more digits)
$\backslash \mathrm{d}+\quad \rightarrow \quad$ My block has 15 floors, and I live on floor 5.
(match all numbers with 1 or more digits)
$\backslash \mathrm{b} \backslash \mathrm{w}\{2,4\} \backslash \mathrm{b} \quad \rightarrow \quad$ My block has 15 floors, and I live on floor 5 . (match words with 2 to 4 characters)
\b[Ff]loor[s]? b b
$\rightarrow \quad$ My block has 15 floors, and I live on floor 5.
(match occurrences of "floor", either capitalized or not, either in singular or plural)

Groups

Quick quiz: In which case(s) would the RegEx below fail to correctly match an email address?

- Groups: Organizing patterns into parts

- Groups are enclosed using "(...)"

■ While whole expression must match, groups are captures individually (a match is no longer a string but a tuple of strings, on for each group)

- Groups can be nested, e.g., (...(...)...((...))...)
(order of groups depends on the order in which the groups "open")

Send an email to alice@example.org for more information.

Match:	user@example.org
Group \#1:	alice
Group \#2:	example.org

Match 1 or more letters, digits, underscores, or periods

Backreferences

Quick quiz: Can the same be achieved using only 1 group?

- Reference groups within a RegEx
- Find repeated patterns (see example below)
- Support only partial replacement of matches
- Example:
- "My mom said I need to pass this test."
- Goal: Find all words that start and end with the same letter

Match:	mom
Group \#1:	mom
Group \#2:	m

Match:	test
Group \#1:	test
Group \#2:	t

Lookarounds

- Special groups - assertions

- Match like any other group, but do not capture the match

■ 2 types: lookaheads and lookbehinds

- 2 forms of assertion: positive and negative

	Type	Example
$(?=)$	positive lookahead	A $(?=\mathrm{B}) \rightarrow$ finds expr. A but only when followed by expr. B
$(?!)$	negative lookahead	A (?!B) \rightarrow finds expr. A but only when not followed by expr. B
$(?<=)$	positive lookbehind	$(?<=\mathrm{B}) \mathrm{A} \rightarrow$ finds expr. A but only when preceded by expr. B
$(?<!)$	negative lookbehind	$(?<!$ B) A \rightarrow finds expr. A but only when not preceded by expr. B

Lookarounds - Example

- Positive lookahead

■ "Paying 10 SGD for 1 kg of chicken seems fair."
■ Goal: Extract all kg values (numbers followed by the unit kg)

$\backslash d+\left(?=\backslash s^{*} \mathrm{~kg}\right) \rightarrow$| "Paying 10 SGD for 1 kg of chicken seems fair. |
| :--- |
| "Paying 10 SGD for 1.5 kg of chicken seems fair. |
| "Paying 10 SGD for $1,500.00 \mathrm{~kg}$ of chicken seems fair. |

[0-9.,]* $[0-9]+(?=\backslash s * k g)$
$\rightarrow \quad$ "Paying 10 SGD for 1.5 kg of chicken seems fair.
"Paying 10 SGD for $1,500.00 \mathrm{~kg}$ of chicken seems fair.

Outline

- Regular Expressions
- Basic Concepts
- Relationship to FSA
- Error Types
- Corpus Preprocessing
- Tokenization
- Normalization
- Stemming / Lemmatization
- Segmentation
- Word error handling
- Spelling Errors
- Minimum Edit Distance
- Noisy Channel Model

Relationship to Finite State Automata

- Equivalence
- Regular Expressions describe Regular Languages (most restricted types of languages w.r.t Chomsky Hierarchy)
- Regular Language = language accepted by a FSA

Example: FSA that accepts the Regular Language described by the Regular Expression I(0+I)+

Chomsky Hierarchy

(Source: Wikipedia)

Relationship to Finite State Automata

- Basic equivalences
a

$a b$

a | b

a*

In-Lecture Activity (10 mins)

- Task: Find a RegEx describing the FSA below
- Post your RegEx to Canvas > Discussions
(individually or as a group; include all group members' names in the post)
- Optional: There are more than one correct answer \rightarrow Why?

Outline

- Regular Expressions
- Basic Concepts
- Relationship to FSA
- Error Types
- Corpus Preprocessing
- Tokenization
- Normalization
- Stemming / Lemmatization
- Segmentation
- Word error handling
- Spelling Errors
- Minimum Edit Distance
- Noisy Channel Model

Error Types — What Can Go Wrong

- Example: Find all occurrences of article "the"

■ Naive approach: "the" (fixed pattern)
incorrect matches

There's no other way to learn the power of Regular Expressions than to use them regularly. The productivity is worth the effort.

Error Types

- 2 basic types of errors

Not matching things that we should have matched (e.g., THE)

Error Types - Observations

- Many contexts deal with these 2 types of errors, e.g.:

■ Medical testing (e.g., ART test is positive but person is not infected with COVID \rightarrow false positive)
■ Information retrieval (e.g., a Web search is missing a relevant page \rightarrow false negative)
■ Document classification (e.g., an abusive tweet has be classified as positive \rightarrow false positive)

- Reducing errors false negative false positive
- Both error types not always equally bad (infected person tests negative vs. $\overbrace{\text { healthy person test positive) }}$
- Reducing False Positives and False Negatives often in conflict
(reducing False Positives often increases False Negatives, and vice versa)

Regular Expressions - Summary

- Know their powers
- Extremely useful tool for many (low-level) text processing tasks
(e.g., data preprocessing, tokenization, normalization)
- Important skill for anyone working with strings or text
- Know their limitations
- Regular Expressions represent hard rules
- Higher-level text processing task generally require statistical models ("soft" rules)
\rightarrow Machine Learning classifiers

WHAT GIVES PEOPLE FEELINGS OF POWER

Outline

- Regular Expressions
- Basic Concepts
- Relationship to FSA
- Error Types
- Corpus Preprocessing
- Tokenization
- Normalization
- Stemming / Lemmatization
- Segmentation
- Word error handling
- Spelling Errors
- Minimum Edit Distance
- Noisy Channel Model

Tokenization

- Tokenization: splitting a string into tokens \rightarrow vocabulary (set of all unique tokens)
- Token = character sequence with a semantic meaning
(typically: words, numbers, punctuation — but may differ depending on applications)
- Very important for step for most NLP algorithms (tokenization errors quickly propagate up \rightarrow "garbage in, garbage out")

Character-based tokenization trivial (e.g., using Regex: .)

- 3 basic approaches

Tokenization — Word-Based

Quick quiz: What is an important assumption for the 2 approaches?

- 2 intuitive approaches (solved using RegEx)

■ Match all words, numbers and punctuation marks \rightarrow \w+|\d+|[,.;:]

- Match boundaries between "words" and "non-words" $\rightarrow(?=\backslash W) \mid(?<=\backslash W)$
$\backslash \mathrm{w}+|\backslash \mathrm{d}+|[, . ;:] \rightarrow$ NLP is fun, and there is so much to learn in 13 weeks.
$(?=\backslash W)|(?<=\backslash W) \rightarrow N L P| \mid$ is \mid fun || | and||there||is||so| much||to| |earn||in||13||weeks||

Tokenization — It Quickly Gets Tricky

\(\left.\begin{array}{lll}Multiword phrases \& \rightarrow I just came back from New York City,

Common contractions \& \rightarrow I'm not home, so don't call,

Hyphenations \& \rightarrow NLP is a well-defined but non-trivial topic,

Acronyms, names, etc. \& \rightarrow I watched a C++ documentary on T.V.

Special tokens \& \rightarrow My email is chris@nus.comp.nus.sg ; 0\end{array}\right\}\)| RegEx used: |
| :--- |
| $\backslash w+\|\backslash d+\|[, . ;:]$ |

Example: spaCy Tokenizer

(1) Split string on whitespace characters
(2) From left to right, recursively check substrings:

- Does substring match an exception rule? (e.g., "don't" \rightarrow "do", "n't", but keep "U.K. ")
- Can a prefix, suffix or infix be split of? (e.g., commas, periods, quotes, hyphens)

Substring checks based on

- Regular Expressions
- Hand-crafted rules / patterns

Example: Chris's Tokenizer

Sequential labeling of characters

$@$	B	o	b	.	.	.	I	Q	\#	D	u	n	e	M	o	v	i	e	

@ B o b|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|
@ B o b
@ B o b I @ \# D u n e M o v i

Label all whitespace characters
Label all unicode characters

Label all emoticons

Label all special token types

Label all punctuation marks

Label all all alphanumeric characters
\rightarrow Tokens = Substrings with adjacent characters with the same labels

Tokenization — Language Issues

- French

■ Different uses of apostrophes and hyphens (compared to English)

- German

■ Very common: compound nouns

Arbeiterunfallversicherungsgesetz
 "worker injury insurance act"

Tokenization — Language Issues

－Languages without whitespaces separating words

Chinese

Japanese
－multiple syllabaries
－multiple formats for dates and amounts
莎拉波娃｜现在｜居住｜在｜美国｜东南部｜的｜佛罗里达
Sharapova now lives in US

Tokenization — Word Segmentation of Chinese Text

－Baseline algorithm：Maximum Matching

莎拉波娃现在居住在美国东南部的佛罗里达

莎拉波娃现在居住在美国东南部的佛罗里达
Sharapova
莎拉波娃｜现在居住在美国东南部的佛罗里达

莎拉波娃1现在居住在美国东南部的佛罗里达 now
（1）Place a pointer at the beginning of the string
（2）Find longest word in dictionary that matches string starting the pointer
（3）Mover the pointer over the word in the string
（4）Goto \＃2 to process the whole string

Tokenization — Maximum Matching

- Surprisingly good performance on Chinese text (even better performance with probabilistic methods or extensions)
- Generally does not work for English text

Tokenization — Subword-Based

- Subword-based tokenization

■ So far: a priori specification of rules (e.g., RegEx) what constitutes valid tokens
■ Now: use data to specify how to tokenize

- Why do we want to do this?
- Out Of Vocabulary (OOV) words
(word/token an NLP model has not seen before)
- Very rare words in corpus
\rightarrow problematic when building statistical models

Examples:

\rightarrow Goal: Split OOV and rare words into (some) known \& frequent tokens

Tokenization — Subword-Based

- Different algorithms for subword tokenization
- Byte-Pair Encoding (BPE), Unigram Language Model Tokenization, WordPiece, etc.
- Different approaches, similar 2-parts setup

```
(1) Token Learner
    Takes raw training corpus and induces a vocabulary (i.e., set of tokens)
(2) Token Segmenter
    Takes a raw text and tokenizes it according to vocabulary
```


Tokenization - BPE Token Learner

Quick quiz: What happens

if $\mathrm{k}=0$ or $\mathrm{k}=\infty$?

Corpus:

"Iow low low low low lower lower newest newest newest newest newest newest widest widest widest longer"

Initialize vocabulary (e.g., \{'d', 'e', 'g', 'i', 'l', 'n', 'o', 'r', 's', 't', 'w', $\}$)
REPEAT
Find the 2 tokens most frequently adjacent to each other (e.g., 'e', 's')
Add a new merged token 'es' to vocabulary
Replace every adjacent 'e' 's' in corpus with 'es'
UNTIL merges have been done

Tokenization - BPE Token Learner

corpus representation

6	n e w est
5	l 0 w
3	w i d e st
2	l o w er _
1	l ○ n g e r _

vocabulary
d, e, g, i, l, n, o, r, s, t, w, _
merges
most frequent pair: e \& s (9 occurrences)
corpus representation

6	n e w es t
5	l o w
3	wi d es t _
2	l o w er _
1	l 0 n ger_

vocabulary
d, e, g, i, l, n, o, r, s, t, w, _, es
merges
(e, s)
most frequent pair: es \& t (9 occurrences)

Tokenization - BPE Token Learner

corpus representation

6	n e w est
5	10 w
3	w i d est
2	l o w e r
1	10 n g $\mathrm{l}^{\text {r }}$

vocabulary
d, e, g, i, l, n, o, r, s, t, w, _, es, est
merges
(e, s), (es, t)
most frequent pair: est \& _ (9 occurrences)
vocabulary
d, e, g, i, l, n, o, r, s, t, w, _, es, est, est_
merges
(e, s), (es, t), (est, _)
most frequent pair: 1 \& o (8 occurrences)

Tokenization - BPE Token Learner

corpus representation

6	n e w est_
5	lo w
3	w i d est_
2	lo w e r _
1	lo n g e $\mathrm{r}_{\text {_ }}$

vocabulary
d, e, g, i, l, n, o, r, s, t, w, _, es, est, est_, lo
merges
(e, s), (es, t), (est, _), (l, o)
most frequent pair: lo \& w (7 occurrences)
vocabulary
d, e, g, i, l, n, o, r, s, t, w, _, es, est, est_, lo, low
merges
(e, s), (es, t), (est, _), (l, o), (lo, w)
most frequent pair: n \& e (6 occurrences)

Tokenization - BPE Token Learner

```
vocabulary d, e, g, i, l, n, o, r, s, t, w, _, es, est, est_, lo, low, ne
    merges (e, s), (es, t), (est, _), (l, o), (lo, w), (n, e)
```

 \(\sqrt{\square}\)
 vocabulary d, e, g, i, l, n, o, r, s, t, w, _, es, est, est_, lo, low, ne, new
merges (e, s), (es, t), (est, _), (l, o), (lo, w), (n, e), (ne, w)
\square

merges (e, s), (es, t), (est, _), (l, o), (lo, w), (n, e), (ne, w), (new, est_)

Tokenization — BPE Token Segmenter

```
vocabulary d, e, g, i, l, n, o, r, s, t,w,_, es, est, est_, lo, low, ne, new, newest_,
    low_, er, er_,wi,wid, widest_,lower_,lon, long, longer_
    merges (e, s), (es, t), (est, _), (l, o), (lo, w), (n, e), (ne, w), (new, est_), (low, _), (e, r),
        (er, _), (w, i), (wi, d), (wid, est_), (low, er_), (lo, n), (lon, g), (long, er_)
```

Tokenize/segment

\rightarrow tokens: "new", "er_"
Run each merge in order they have been learned

Tokenization — Summary

- Tokenization as low-level NLP task

■ Challenges: important, non-trivial, language-dependent

- Particularly tricky for informal language (e.g., social media)
- 3 basic approaches
- Character-based (trivial to do but often not suitable - individual characters generally carry no semantic meaning)

■ Word-based (a priori specification of rules; language-dependent; problem: OOV/rare words)

- Subword-based (tokenization learned from data - tokens are often morphemes!)
- Practical consideration (when using off-theshell word-based tokenizers)

■ What is my type of text (e.g., formal or informal)? Are there special tokens (e.g., URLs, hashtags)?
■ Try and assess different tokenizers - very, very last resort: write your own tokenizer

Outline

- Regular Expressions
- Basic Concepts
- Relationship to FSA
- Error Types
- Corpus Preprocessing
- Tokenization
- Normalization
- Stemming / Lemmatization
- Segmentation
- Word error handling
- Spelling Errors
- Minimum Edit Distance
- Noisy Channel Model

Normalization

- Goal: Convert text into a canonical (standard) form
- Remove noise / "randomness" from text
- Affects characters, words, sentences, documents
- Implicit definition of equivalence classes
- Suitable normalization steps depend on task/application

Alternative to equivalence classes: asymmetric expansion		
Example: Web Search (utilize case of search terms)		
Entered term		Searched terms
window	\rightarrow	window, windows
windows	\rightarrow	Windows, windows, window
Windows	\rightarrow	Windows

Raw	Normalized
Germany GERMANY	germany
USA U.S.A US of A	USA
tonight tonite 2N8	tonight
connect connects connected connecting connection	connect
:) :-) :o)	smile

Normalization — Case Folding

- When to fold?

■ Common application: Information Retrieval
(e.g., Web search where must users type only in lowercase anyway)

■ Potential problems: Bush vs. bush, MOM vs. mom, Cloud vs. cloud, etc. (potential exception: upper case word in mid sentence?)

- When NOT to fold?
- NLP tasks where case of letters or words are important features
- Examples: Named Entity Recognition, Machine Translation

They sent us a card from the US during their vacation.

Outline

- Regular Expressions
- Basic Concepts
- Relationship to FSA
- Error Types
- Corpus Preprocessing
- Tokenization
- Normalization
- Stemming / Lemmatization
- Segmentation
- Word error handling
- Spelling Errors
- Minimum Edit Distance
- Noisy Channel Model

Normalization — Stemming \& Lemmatization

- Motivating example:
"dogs make the best friends" vs. "a dog makes a good friend"
\rightarrow Very similar semantics but (very) different syntax
- Common reasons for variations of the same word
- Singular vs. plural form (mainly of nouns)
- Different tenses of verbs
- Comparative/superlative of adjectives
\rightarrow Can we normalize words to abstract from such variations?

Normalization — Stemming

- Idea of Stemming
- Reduce words to their stem
- Approach: crude chopping of affixes based on rules $(\rightarrow$ language dependent)
- Different stemmers apply different rules
- Characteristics
- Pro: fast + no lexicon required
- Con: stemmed word not necessarily a proper word (i.e., not in dictionary)

Examples

(alternatives reflect results from different stemmers)

Raw	Stemmed
cats	cat
running	run
phones	phon(e)
presumably	presum
crying	cry/cri
went	went
worse	best
best	mic(e)
mice	

Normalization — Stemming: Porter Stemmer

- Porter Stemmer - most common stemmer for English text
- Simple, efficient + very good results in practice
- Series of rewrite rules that run in a cascade

■ Output of each pass is fed is input to the next pass

- Stemming steps if a pass yields no more changes

	sses \rightarrow ss	e.g.: possesses \rightarrow possess, classes \rightarrow class
	tional \rightarrow tion	e.g., optional \rightarrow option, fictional \rightarrow function
	ies \rightarrow i	e.g., cries \rightarrow cri, tries \rightarrow tri
stem must contain vowel	$\left({ }^{*} \mathrm{v}^{*}\right.$) ing \rightarrow ¢	e.g.: sing \rightarrow sing, singing \rightarrow sing, talking \rightarrow talk
stem must contain >1 chars	$(\mathrm{m}>1)$ ement $\rightarrow \varepsilon$	e.g., replacement \rightarrow replac, cement \rightarrow cement

Normalization — Lemmatization

- Idea of Lemmatization
- Reduce inflections or variant forms to base form
- Find the correct dictionary headword form

■ Differentiates between word forms: nouns (N), verbs (V), adjectives (A)

Raw	Lemmatized (N)	Lemmatized (V)	Lemmatized (A)
running	running	run	running
phones	phone	phone	phones
went	went	go	went
worse	worse	worse	bad
mice	mouse	mice	mice

Normalization — Lemmatization: Characteristics

- Pros
- Lemmatized words are proper words (i.e., dictionary words)
- Can normalize irregular forms (e.g., went \rightarrow go, worst \rightarrow bad)
- Cons

■ Requires curated lexicons / lookup tables + rules (typically)

- Requires Part-of-Speech tags for correct results
- Generally slower as stemming

Normalization — Stemming \& Lemmatization

- Back to our motivating example

Raw: "dogs make the best friends" "a dog makes a good friend"
Stemmed: "dog make the best friend" "a dog make a good friend"
Lemmatized: "dog make the good friend" "a dog make a good friend"

Normalization — Final Words

- Canonical form also effects tokenization, e.g.: Penn Treebank Tokenizer

■ Separate out clitics (e.g., doesn't \rightarrow does n't; John's \rightarrow John 's)

- Keep hyphenated words together
- Separate out all punctuation symbols
- Other common normalization steps

■ Removal of stopwords (e.g., a, an, the, not, and, or, but, to, from, at)
■ Removal of non-standard tokens (e.g., URs, emojis, emoticons)

Quick Quiz

Which preprocessing step would negatively affect sentiment analysis most obviously (arguably)?

Outline

- Regular Expressions
- Basic Concepts
- Relationship to FSA
- Error Types
- Corpus Preprocessing
- Tokenization
- Normalization
- Stemming / Lemmatization
- Segmentation
- Word error handling
- Spelling Errors
- Minimum Edit Distance
- Noisy Channel Model

Sentence Segmentation

- Sound like a simple task but...

■ Period "." can be quite ambiguous (e.g., "1.25", "U.S.A.", "Dr.") — "?", "!" relatively unambiguous

- Poor punctuation in informal text (common: missing whitespaces, missing capitalization)
\rightarrow RegEx for segmenting sentences quickly become very complex
Example RegEx: $(?<!\backslash w \backslash . \backslash w).(?<![A-Z][a-z] \backslash).(?<=\backslash . \mid \backslash ?) \backslash s$
(Source: Stackoverflow)
- Alternative: binary classifier

■ Consider each period "." in a text

- Classify: EndOfSentence or NotEndOfSentence
\rightarrow Possible approaches: handwritten rules, set of RegEx, machine learning

Quick quiz: What are some common cases where this classifier would fail?

Many Other Features Conceivable

- Example: numerical features

■ length of word before / after period "."

- Distance (in \#chars) to next punctuation mark
- Probabilities derived from a dataset
(e.g., probability of with "." occurs at the end of sentence)

Outline

- Regular Expressions
- Basic Concepts
- Relationship to FSA
- Error Types
- Corpus Preprocessing
- Tokenization
- Normalization
- Stemming / Lemmatization
- Segmentation
- Word error handling
- Spelling Errors
- Minimum Edit Distance
- Noisy Channel Model

Spelling Errors

1. Non-word error detections

- Basically, word is not found in dictionary
- Example: detecting graffe (misspelling of giraffe)

2. Isolated-word error correction

- Consider word in isolation (i.e., without surrounding words)
- Example: correcting graffe to giraffe

3. Context-sensitive error detection \& correction

- Consider surrounding words to detect and correct errors
- Important for "wrong" words that a spelled correctly

■ Examples: there vs. three, dessert vs. desert, son vs. song

Spelling Errors - Common Patterns

- Observation
- Most misspelled words in typewritten text are single-error

■ Damerau (1964): 80\%, Peterson (1986): 93-95\%

- Single-error misspellings

■ Insertion (e.g., acress vs. acres)
■ Deletion (e.g., acress vs. actress)

- Substitution (e.g., acress vs. access)

■ Transposition (e.g., acress vs. caress)

For non-word errors:
\rightarrow Good candidates are orthographically similar
\rightarrow Minimum Edit Distance

Outline

- Regular Expressions
- Basic Concepts
- Relationship to FSA
- Error Types
- Corpus Preprocessing
- Tokenization
- Normalization
- Stemming / Lemmatization
- Segmentation
- Word error handling
- Spelling Errors
- Minimum Edit Distance
- Noisy Channel Model

Minimum Edit Distance (MED)

- Minimum Edit Distance between 2 strings s_{1} and s_{2}
- Minimum number of allowed edit operations to transform s_{1} into s_{2}
- Allowed edit operations: Insertion, Deletion, Substitution, Transposition
- Example
- $s_{1}=$ "LANGUAGE"
- $s_{2}=$ "SAUSAGE"

MED if all operations cost $1 \rightarrow 4$
MED if Substitution costs 2, Insertion 1, Deletion 1

Minimum Edit Distance - Calculation

- Problem formulation: Find a path (i.e., sequence of edits) from start string to final string
- Initial state: the word being transformed (e.g., "LANGUAGE")

■ Target state: the word being transformed into (e.g., "SAUSAGE")
■ Operators: insert, delete, substitute
■ Path cost: aggregated costs of all edits

Minimum Edit Distance - Calculation

- Observations
- Many distinct paths end up in the same state

\rightarrow No need to keep track of all paths
\rightarrow Only important: "cheapest" path to each revisited state (best in terms of costs, not just number of operations!)
\rightarrow Solve using Dynamic Programming
solving problems by combining solutions to subproblems

Minimum Edit Distance - Calculation

- Input: 2 strings
- Source string X of length n
- Target string Y of length m

- Define $D(i, j)$ as MED between $X[0 . . i]$ and $Y[0 . . j]$
\rightarrow MED between X and Y is thus $D(n, m)$
- Bottom-up approach of Dynamic Programming

■ Compute $D(i, j)$ for small i, j (base cases)
■ Compute $D(i, j)$ for larger i, j based on previously computes $D(i, j)$ for smaller i, j

Minimum Edit Distance - Calculation

- Initialization of bases cases

■ $D(i, 0)=i \quad$ (getting from $X[0 . . i]$ to empty target string requires i deletions)
Assumptions for costs
Insert: 1
Delete: 1
Substitute: 2
\rightarrow Levenshtein MED
■ $D(0, j)=j$ (getting from empty source string to $Y[0 . . j]$ requires j insertions)

- For $0<i \leq n$ and $0<j \leq m$

$$
D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1 \text { Delete } \\
D(i, j-1)+1 \text { Insert } \\
D(i-1, j-1)+ \begin{cases}2, & \text { if } X[i] \neq Y[j] \\
0, & \text { if } X[i]=Y[j]\end{cases}
\end{array}\right.
$$

Minimum Edit Distance - Calculation Example

Minimum Edit Distance - Calculation Example

\mathbf{E}	8	9	8	7	8	7	6	5
\mathbf{G}	7	8	7	6	7	6	5	6
\mathbf{A}	6	7	6	5	6	5	6	7
\mathbf{U}	5	6	5	4	5	6	7	8
\mathbf{G}	4	5	4	5	6	7	6	7
\mathbf{N}	3	4	3	4	5	6	7	8
\mathbf{A}	2	3	2	3	4	5	6	7
\mathbf{L}	1	2	3	4	5	6	7	8
$\#$	0	1	2	3	4	5	6	7
	$\#$	\mathbf{S}	\mathbf{A}	\mathbf{U}	\mathbf{S}	\mathbf{A}	\mathbf{G}	\mathbf{E}

Minimum Edit Distance - Backtrace \& Alignments

- Current limitation

- Base algorithm only returns the MED

■ Often important: alignment between strings

How do we get this?

- Keep track of backtrace

■ Remember from which "direction" we entered a new cell

- At the end, trace path from upper right corner to read of alignment

Keep set of pointers for each i, j

Small extension to base algorithm:
$\operatorname{PTR}(i, j)= \begin{cases}\text { LEFT } & \text { Insert } \\ \text { DOWN } & \text { Delete } \\ \text { DIAG } & \text { Substitute }\end{cases}$

Minimum Edit Distance — Backtrace \& Alignments

\mathbf{E}	8	$\swarrow \leftarrow \downarrow 9$	$\downarrow 8$	$\downarrow 7$	$\swarrow \leftarrow \downarrow 8$	$\downarrow 7$	$\downarrow 6$	$\swarrow 5$
\mathbf{G}	7	$\swarrow \leftarrow \downarrow 8$	$\downarrow 7$	$\downarrow 6$	$\swarrow \leftarrow \downarrow 7$	$\downarrow 6$	$\swarrow 5$	$\leftarrow 6$
\mathbf{A}	6	$\swarrow \leftarrow \downarrow 7$	$\swarrow \downarrow 6$	$\downarrow 5$	$\swarrow \leftarrow \downarrow 6$	$\swarrow 5$	$\leftarrow 6$	$\leftarrow 7$
\mathbf{U}	5	$\swarrow \leftarrow \downarrow 6$	$\downarrow 5$	$\swarrow 4$	$\leftarrow 5$	$\leftarrow 6$	$\leftarrow \downarrow 7$	$\swarrow \leftarrow \downarrow 8$
\mathbf{G}	4	$\swarrow \leftarrow \downarrow 5$	$\downarrow 4$	$\swarrow \leftarrow \downarrow 5$	$\swarrow \leftarrow \downarrow 6$	$\swarrow \leftarrow \downarrow 7$	$\swarrow 6$	$\leftarrow 7$
\mathbf{N}	3	$\swarrow \leftarrow \downarrow 4$	$\downarrow 3$	$\swarrow \leftarrow \downarrow 4$	$\swarrow \leftarrow \downarrow 5$	$\swarrow \leftarrow \downarrow 6$	$\swarrow \leftarrow \downarrow 7$	$\swarrow \leftarrow \downarrow 8$
\mathbf{A}	2	$\swarrow \leftarrow \downarrow 3$	$\swarrow 2$	$\leftarrow 3$	$\leftarrow 4$	$\swarrow \leftarrow 5$	$\leftarrow 6$	$\leftarrow 7$
\mathbf{L}	1	$\swarrow \leftarrow \downarrow 2$	$\swarrow \leftarrow \downarrow 3$	$\swarrow \leftarrow \downarrow 4$	$\swarrow \leftarrow \downarrow 5$	$\swarrow \leftarrow \downarrow 6$	$\swarrow \leftarrow \downarrow 7$	$\swarrow \leftarrow \downarrow 8$
$\mathbf{\#}$	0	1	2	3	4	5	6	7
	$\mathbf{\#}$	\mathbf{S}	\mathbf{A}	\mathbf{U}	\mathbf{S}	\mathbf{A}	\mathbf{G}	\mathbf{E}

Quick quiz: Why do we choose
the diagonal path here?

LANGU*AGE

Minimum Edit Distance－More Examples

－Biology：Align 2 sequences of nucleotides

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

		$1{ }^{130}$	\downarrow^{29}	28 $<1 \times 27$	$1{ }^{26}$	$\downarrow 25$	124	人 123	14＋24	$6+23$	1 122			人 219	${ }^{18}$	$\checkmark+17$	$\downarrow 16$		\％+16	＜ 215	$x+16$	1.15	114	\％+15	｜$V+.16$｜	15	人， 14	1＋13	＜ 12	¢ 13	＋14 $\quad<+15$
C	30	－ 129	128	${ }_{27}^{27 \quad<} \times 26$	25	24	23	＋22	＋ 23	$1+2$	21			$\checkmark 18$					（－＋15	114		14	13	＜－114	＜+15	14			＋13	＋14	$\leftarrow 15 \quad<+16$
	29	${ }^{1}+28$		${ }^{26} \quad \ll 25$	${ }^{24}$	． 23				$\checkmark \downarrow 21$					16	$\checkmark 1.5$		113	1＋＋14			${ }^{13}$	12			13					＜17
G	28	27	126	$25 \quad 124$	23	22		＜t＋22	21	20		118	117	16	115	14	． 13	12	$+1.3$	＋． 14	－ 113	12	1	$\frac{1+12}{}$	＋．13	12	－13	＋14	＋15	／<16	＋117 $/ 1+118$
T	${ }^{27}$	－26	${ }^{25}$	${ }^{24} \quad \downarrow 23$	1＋22	21		${ }^{21}$	${ }^{20}$	19	118	117	116	15	$\downarrow 14$	，	＋12	＜$\square^{1 / 13}$	$\checkmark 12$	$\downarrow 13$	． 12	． 11	$\checkmark{ }^{10}$	－ 11	र． 12						$116 \%+17$
A	26	＋+25	＜ 24	$\downarrow 23 \quad \downarrow 22$	$+21$	＋20	$\underline{1+21}$	$+20$	＋ 19	＋18	17	116	$\underline{15}$	14	13	12	11	$\checkmark \div \downarrow 12$	$\stackrel{\leftarrow+13}{ }$	12	11	10	$\leftarrow 11$	$\leftarrow 12$	$\leftarrow 13$	$\leftarrow 14$	$\leftarrow 15$	－ 116	$<++17$	16	$15 \quad \leftarrow 16$
	${ }^{25}$	＋24	＋2，	${ }^{+22}$	＋20			119	18	17		115	114	${ }^{13}$	＋12		${ }^{10}$	V＋411	$\%$ \％ 12	11		¢11	¢12			10， 15					
c	24	$4 \quad \downarrow 23$	122	$21 \quad<20$	$\underline{19}$		人＊ 19	－ 118	17	$\cdots+16$		114		12	11	$+10$	${ }^{11}$	$+10$	$\underline{x+411}$	＜ 10	C．+11	＋＋ 12	¢ $\downarrow 13$	＜+14	－ 15	人， 116	15				
	${ }_{22}^{23}$	3		+23 19 $\checkmark \cdot 19$	178	16	k＋18	$\checkmark+17$		$\stackrel{+15}{ }$	114	113	$1{ }^{12}$		${ }^{10}$			＋9	2t＋10	49	\leftarrow	－11	$\leftarrow 12$			415	14				
G	21	20	＋19	$\stackrel{1}{1818}$	116	115	\checkmark	115	14	$\stackrel{1}{1}$	$\stackrel{1}{12}$	111	110	19	${ }^{\text {8 }}$	\checkmark	$\stackrel{8}{8}$	$\frac{1}{1+9}$	＋10	$t+11$	$\checkmark 10$	＋11	$\frac{\square}{V+12}$	$\frac{1}{1+113}$	$\frac{2}{2+14}$	$\stackrel{1}{13}$	＋14	\％			
A	20	）+19	（\％ 18	17 ＋16	15	14	＋．15	114	4.13	112	$\downarrow 11$	$1{ }^{16}$	19	18	（2＋19	18	1＋19	（＋110	1＋＋11	1.10	（2＋11	$1{ }^{10}$	¢ 11	－12	¢ 13	\％ 14	4.15				
	19	${ }^{+18}$		$16 \quad 6 \cdot 15$	14	＋+15				－111	110	19	178		＋+18	17	$1+18$	＜+ ¢ 9	＋+10	6.9	$1++10$	＋11	＋+12	$1++13$	$\leftarrow 14$	＋+15	$\checkmark 14$	\leftarrow			
	18	17	＋16	15 k	13	（4－414	13	＜+12		（ 1110				$1{ }^{6}$				$\leftarrow 8$	$5{ }^{4}$		\leftarrow^{9}	$\leftarrow 10$	$\leftarrow 11$	$\leftarrow 12$	$\leftarrow 1.3$	$\leftarrow 14$	－	± 16	15		
T	17	1.16	15	$14 \quad 13$	$\checkmark 12$	＋+13	1.12	11	10	19		7	16	5	1＋16	$1+47$	$1+18$	＜＋+9		－9	＋10	－11	ct12	1＋13	1＋14	＋15	＋． 16	115	$1+116$	＋． 17	＋118 $/ 1+119$
$\stackrel{C}{c}$	${ }_{15}^{16}$	+1.5 1 14	114 18	13 12 $\checkmark<12$ 12 -11	$\substack{+\downarrow 13 \\ -112}$	12	$\downarrow 11$ $\downarrow 10$	$\stackrel{+110}{\square+9}$	19	4	${ }_{6}^{7}$	＋16	4	$\stackrel{4}{4}$	+5 +6	－	7 8	¢8	+9 +10	－	+11 -11	$\leftarrow 12$	$\xrightarrow{1+4.13}$				$\checkmark \times 15$	${ }_{\square}^{\square 14}$	位 15	$\stackrel{\leftarrow}{+16}$	+17 +18
				$11 \times \leftarrow$	111			\％		＋		／4			－ 7	人＋18	14.9	$1+\downarrow 10$	＋411	$\stackrel{\text { ¢ }}{4}$	11		$\leftarrow 11$		$\leftarrow 13$	$\leftarrow 14$		$\leftarrow 10$	＋17		$\begin{array}{rr}\leftarrow+18 & \backslash+19 \\ \leftarrow+19 & \leftarrow-20\end{array}$
	13	$3 \quad 112$	111	$10^{2}+111$	110	19		17	6	15	4	＋5	± 6	$x+17$	6	$\leftarrow 7$		＜＜－9	$\stackrel{+10}{ }$	＜t＋ 11	$\bigcirc 10$	＋11	＋12	－13	＋14	－ 15	＋16	＋17	－18	－ 19	$\div 20$
T	12	／ 11	110	$1+111 \quad 10$	＜19	8		6	15	，		1×16	15	$1+16$	$\checkmark+47$	1＋18	$\langle<19$	＜t＋10	$\checkmark 9$	$\leftarrow 10$	$\leftarrow 11$	－12	$x+13$	$\checkmark+14$	$1+15$	$\leftarrow 16$	$+17$	＋riols	＋19	$\leftarrow 20$	＋21 $\quad+22$
	11	（10 +10	9	人＜＋10＜19		17		$\checkmark+5$	，	$1+3$	－＋＋	x＋25	$\checkmark 4$							－$\times 111$	＜ 12	－13					$\checkmark \times 18$	＜－19	$\checkmark<20$	－21	－ 22×123
	${ }^{10}$			＜t－19	7	5		C4	$\downarrow 3$	$\checkmark 2$	＋		－+5	－+6	＋7	$\stackrel{+8}{+8}$	－9	$\leftarrow 10$	＋11	－<12	\leftarrow	－14	$\leftarrow 15$	－ 16	+17 $\leftarrow 18$	¢18	＜+19	＜ 4 ＋20	＜+21	＋22	
${ }_{\text {A }}$		\％	7		${ }_{5}^{6}$	15		13	$\times 2$		－5	\％ 5			－8			－	$\pm{ }_{5}^{12}$	－13	＋14	－ 6	＋16	$\stackrel{17}{ }$			－ 20	（1－21	－ 422	＋	［ ${ }^{22}$－${ }^{23}$
c								$\stackrel{4}{\leftarrow}$	$\stackrel{+}{\leftarrow}$	$\stackrel{+}{1+4}$	＋5	$\stackrel{\leftarrow}{\leftarrow}$		$\stackrel{+}{+8}$	－9	¢ +10	$\stackrel{\leftarrow}{+11}$	$\stackrel{+12}{+13}$	+13 $\times+14$	¢ +14			$\stackrel{+177}{+15}$			－					$\begin{array}{rr}\leftarrow 23 & \backslash+24 \\ \leftarrow+24 \\ \leftarrow+25\end{array}$
，	6	． 5	$\checkmark 4$	$\leftarrow+5$		＜2	－3	＋4	$\checkmark+5$	$\leftarrow 6$	＋7	＋8	－9	$\leftarrow 10$	$\leftarrow 11$	¢ 12	$\leftarrow 13$	¢14	＋ 15	$\stackrel{+}{+16}$	$1+117$	$\checkmark 16$	$\stackrel{17}{ }$	＋18	$\leftarrow 19$	$\leftarrow 20$	＋2	＋22	＋23	＋24	－25 +26
T	\％	5 $<^{4}$				$\leftarrow 3$	＜<1	$\leftarrow 5$	$\leftarrow 6$	$\leftarrow 7$	¢ 8	5	＋410	＜－11	人 $+\sqrt{12}$	¢ 41.3	14	<4.15	6^{14}	$\leftarrow 15$	$\leftarrow 16$	$\leftarrow 17$	1×18	$\boxed{1+19}$	$\ll 20$	¢ 21	\leftarrow	¢ 2	$\leftarrow 29$	$\leftarrow 25$	¢ 27
c	4	＋+5	$\checkmark 4$	$13 \quad<2$	＋3	$\leftarrow 4$	－5	＋6	＋7	1－8	＋$\quad 9$	＜＋410		＜－10	＋11	$1+12$	＋13	ז14	＋15	＜+16	$\leftarrow 17$	$\leftarrow 18$	$\leftarrow 19$	＋20	\leftarrow^{+21}	＋22	－+23	＋24	＋25	＋26	$\leftarrow 27 \quad 1+28$
${ }_{\text {G }}^{\text {G }}$	${ }^{3}$	－4	${ }^{3}$	12 1－43	－44	＜＋${ }^{15}$	－+16		＜ $1+7$	$<+9$	8	$\leftarrow 9$	＋10	$\leftarrow 11$	－12	¢ 11	＋+14	＋+15	－16	$\leftarrow 17$	\checkmark	$\leftarrow 19$	$\leftarrow 20$	－ 21	$\leftarrow 22$	＋+23	－24	－25	＋26	8	－28 $\quad-29$
	2	＋＋+3	，	$1{ }^{1}+2$	\leftarrow	－4	\leftarrow	$\stackrel{+6}{\square 7}$	$\stackrel{+7}{4}$	＋8		$\leftarrow 10$	\leftarrow	${ }_{\text {¢ }}^{+12}$	+13 +14	＋14	+15 +16	－		+18 +19		＋20						＋26	$\stackrel{+27}{+28}$		$\stackrel{+29}{+5}$
\＃	0	＋+	$\begin{array}{r} \\ \\ \hline\end{array}$	－2－3						$\stackrel{+}{+9}$	11		${ }_{+13}$		${ }_{+}{ }^{+15}$	＋${ }_{16}$	$\begin{array}{r}+17 \\ \hline 17\end{array}$	＋18	＋19	＋	＋	${ }_{22}$	${ }_{23}$	，	，	26	27	28	${ }_{29}$	29 30	
	\＃	1	\wedge		T	\wedge	T	c	Λ	c	G	\wedge	c	c	G	c	G	G	T	C	G	，	T	T	T	G	，	C	c	d	，

In-Lecture Activity (10 mins)

- Task: Compute the MED and alignment between "NUS" and "TRUST"
- Post your MED (Levenshtein) and alignment to Canvas > Discussions
(individually or as a group - add all group members' names to the post)

\mathbf{S}	3					
\mathbf{U}	2					
\mathbf{N}	1					
$\#$	0	1	2	3	4	5
	$\#$	\mathbf{T}	\mathbf{R}	\mathbf{U}	\mathbf{S}	\mathbf{T}

- Try to complete the table for this task (probably not needed as the words are very short)
- Some of you can share their solution

Example alignment (but bad one!)

```
NUS*****
***TRUST
```


In-Lecture Activity (10 mins)

- Solution

\mathbf{S}	3	$\swarrow \leftarrow \downarrow 4$	$\swarrow \leftarrow \downarrow 5$	$\downarrow 4$	$\swarrow 3$	$\leftarrow 4$
\mathbf{U}	2	$\swarrow \leftarrow \downarrow 3$	$\swarrow \leftarrow \downarrow 4$	$\swarrow 3$	$\leftarrow 4$	$\leftarrow 5$
\mathbf{N}	1	$\swarrow \leftarrow \downarrow 2$	$\swarrow \leftarrow \downarrow 3$	$\swarrow \leftarrow \downarrow 4$	$\swarrow \leftarrow \downarrow 5$	$\swarrow \leftarrow \downarrow 6$
$\#$	0	1	2	3	4	5
	$\#$	\mathbf{T}	\mathbf{R}	\mathbf{U}	\mathbf{S}	\mathbf{T}

$$
\begin{array}{lllll}
* & \mathbf{N} & \mathbf{U} & \mathbf{S} & \text { * } \\
\mid & \mid & \mid & \mid & \mid \\
\mathbf{T} & R & \mathbf{U} & \mathbf{S} & \mathbf{T}
\end{array}
$$

Minimum Edit Distance — Other Uses in NLP

- Evaluating Machine Translation and speech recognition
e.g., How similar are 2 translations?

- Named Entity Extraction and Entity Coreference
"We stayed at the * Merchant Court prior to a cruise"
I I
"The Swissotel Merchant Court is a great place to stay in Singapore"

Referring to the same entity?

Minimum Edit Distance — Extensions

- Weighted Minimum Edit Distance, e.g:
- Spell Correction: some letters are more likely to be mistyped than others
- Biology: certain kinds of deletions or insertions are more likely than others
\rightarrow Generalization of algorithm
- Application-dependent weights (i.e., costs for edit operations)

Initialization of base cases:
$D(0,0)=0$
$D(i, 0)=D(i-1,0)+\operatorname{del}(X[i])$, for $1<i \leq n$
$D(0, j)=D(0, j-1)+\operatorname{ins}(Y[i])$, for $1<i \leq m$

Recurrence relation:

$$
D(i, j)=\min \begin{cases}D(i-1, j) & +\operatorname{del}(X[i]) \\ D(i, j-1) & +\operatorname{ins}(Y[j]) \\ D(i-1, j-1) & +\operatorname{sub}(X[i], Y[i])\end{cases}
$$

Minimum Edit Distance - Extensions

- Needleman-Wunsch
- No penalty for gaps (*) at the beginning or the end of an alignment
- Good if strings have very different lengths
- Smith-Wasserman
- Ignore badly aligned regions
- Find optimal local alignments within substrings (Levenshtein finds the best global distance and alignment)

Common application:
Alignment of nucleotides sequences

Outline

- Regular Expressions
- Basic Concepts
- Relationship to FSA
- Error Types
- Corpus Preprocessing
- Tokenization
- Normalization
- Stemming / Lemmatization
- Segmentation
- Word error handling
- Spelling Errors
- Minimum Edit Distance
- Noisy Channel Model

Where We are Right Now

- Given a misspelled word, generate suitable candidates for error correction
- 80% of errors are within minimum edit distance 1
- Almost all errors within minimum edit distance 2
- Covers also missing spaces and hyphens
(e.g., thisidea vs. this idea; inlaw vs. in-law)
- Still missing: Which is the most likely candidate?
- Ranking of candidates to show top candidates first
- Support for automated spelling correction

\rightarrow Noisy Channel Model

Idea: Assign each candidate a probability

Noisy Channel Model — Intuition

Probability that word w gets misspelled as x

Decoding: Observing error x, can we predict correct word w ?

Noisy Channel Model — Bayesian Inferencing

Given an observation x of a misspelled word, find the correct word w :

$$
\begin{aligned}
& \widehat{w}=\underset{w \in V}{\operatorname{argmax}} P(w \mid x) \\
& \widehat{w}=\underset{w \in V}{\operatorname{argmax}} \frac{P(x \mid w) P(w)}{P(x)} \\
& \widehat{w}=\underset{w \in V}{\operatorname{argmax}} P(x \mid w) P(w)
\end{aligned}
$$

Noisy Channel Model — Calculating/Estimating $P(w)$

- Approach using Maximum Likelihood Estimate (MLE)
- Required: Large text corpus with N words
- Calculate/estimate $P(w)$ with $P(w)=\frac{f r e q(w)}{N}$
- Example
- 100 MB Wikipedia dump
- Total of $14.4 \mathrm{M}+$ words

[^0]| w | freq(w) | $P(w)$ |
| :--- | ---: | :--- |
| actress | 1,135 | 0.0000784 |
| cress | 1 | $0.00000 \ldots$ |
| caress | 3 | $0.00000 \ldots$ |
| access | 1,670 | 0.0001153 |
| across | 1,756 | 0.0001213 |
| acres | 177 | 0.0000122 |

Noisy Channel Model — Calculating/Estimating $P(x \mid w)$

- In general, $P(x \mid w)$ almost impossible to predict
- Predictions depends on arbitrary factors
(e.g., proficiency of typist, lighting conditions, input device)
- Estimate $P(x \mid w)$ based on simplifying assumptions (Kerighan etal, 1990)
- Most misspelled words in typewritten text are single-error

■ Consider only single-error misspellings: Insertion, Deletion, Substitution, Transposition

Noisy Channel Model — Calculating/Estimating $P(x \mid w)$

- Definition of 4 confusion matrices (1 for each single-eror type)

■ Each confusion matrix lists the number of times one "thing" was confused with another

- e.g., for substitution, an entry represents the number of times one letter was incorrectly used
- Underlying definitions for generate confusion matrices

$\operatorname{ins}[x, y]$	number of times x was typed as $x y$
$\operatorname{del}[x, y]$	number of times $x y$ was typed as x
$\operatorname{sub}[x, y]$	number of times x is substituted for y
$\operatorname{trans}[x, y]$	number of times $x y$ was typed as $y x$
$\operatorname{count}[x]$	number of times that x appeared in the training set
$\operatorname{count}[x, y]$	number of times that $x y$ appeared in the training set

$$
x, y \in\{a, b, c, \ldots, z\}
$$

Noisy Channel Model — Calculating/Estimating $P(x \mid w)$

$$
P(x \mid w)= \begin{cases}\frac{\operatorname{ins}\left[w_{i-1}, x_{i}\right]}{\operatorname{count}\left[w_{i}\right]} & , \text { if insertion } \\ \frac{\operatorname{del}\left[w_{i-1}, w_{i}\right]}{\operatorname{count}\left[w_{i}-1, w_{i}\right]} & , \text { if deletion } \\ \frac{\operatorname{sub}\left[x_{i}, w_{i}\right]}{\operatorname{count}\left[w_{i}\right]} & , \text { if substitution } \\ \frac{\operatorname{trans}\left[w_{i}, w_{i+1}\right]}{\operatorname{count}\left[w_{i}, w_{i+1}\right]} & , \text { if transposition }\end{cases}
$$

$w_{i}=i$-th character in the correct word w
$x_{i}=\mathrm{i}$-th character in the misspelled word x

Noisy Channel Model — Calculating/Estimating $P(x \mid w)$

$\operatorname{sub}[X, Y]=$ Substitution of X (incorrect) for Y (correct)

X														ect												
	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	S	t	u	v	w	X	y	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
c	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
e	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
S	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
V	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
W	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
X	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
y	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
Z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Noisy Channel Model - Example

- Noisy channel probabilities for "acress"

Candidate Correction	Correct Letter	Error Letter	$\mathbf{x \| w}$	$\mathrm{P}(\mathbf{x} \mid \mathrm{w})$	$\mathrm{P}(\mathbf{w})$	$10^{9 *} \mathrm{P}(\mathbf{x} \mid \mathrm{w}) \mathrm{P}(\mathbf{w})$	$\%$
actress	t		$\mathrm{c} \mid \mathrm{ct}$.000117	.0000231	2.7	35.9
cress		a	$\mathrm{a} \mid \#$.00000144	.00000054	.00078	~ 0
caress	ca	ac	$\mathrm{ac\mid ca}$.00000164	.00000170	.0028	~ 0
access	c	r	$\mathrm{r\mid c}$.00000021	.0000916	.019	~ 0
across	o	e	$\mathrm{e} \mid \mathbf{0}$.0000093	.000299	2.8	37.2
acres		s	$\mathrm{es} \mid \mathrm{e}$.0000321	.0000318	1.0	13.3
acres		s	$\mathrm{ss} \mid \mathrm{s}$.0000342	.0000318	1.0	13.3

\rightarrow Choice of candidate for correction: across

Noisy Channel Model — Discussion

- Basic limitation: No consideration of additional context
- Model only applicable for non-word errors

■ Basic model will always suggest "across" to correct "acress"
"The role was played by an acress famous for her comedic timing."
"actress" here the better candidate
\rightarrow Language Models (nextlecture)

Outline

- Regular Expressions
- Basic Concepts
- Relationship to FSA
- Error Types
- Corpus Preprocessing
- Tokenization
- Normalization
- Stemming / Lemmatization
- Segmentation
- Word error handling
- Spelling Errors
- Minimum Edit Distance
- Noisy Channel Model

Summary

- RegEx - fundamental and useful tool
- Text Preprocessing - getting your data ready for analysis
- Tokenization
- Stemming / Lemmatization
- Normalization
typical very task-dependent!
- Error Handling (so far)
- Focus on single-error misspellings
- Focus on isolated-word error correction
already very non-trivial!

Pre-Lecture Activity for Next Week

- Assigned Task

- Post a 1-2 sentence answer to the following question into the Canvas Discussion (you will find the thread on Canvas > Discussions)

"What do we mean when we talk about the probability of a sentence?"

Side notes:

- This task is meant as a warm-up to provide some context for the next lecture
- No worries if you get lost; we will talk about this in the next lecture
- You can just copy-\&-paste others' answers but his won't help you learn better

Solutions to Quick Quizzes

- Slide 9

- The given RegEx is very simple and would match substrings that are not email addresses

■ Examples: a@b, ...@---

- Slide 10
- The outer group is not needed and can be removed
- However, we then need to change the numbering: $\backslash \mathrm{b}([\mathrm{a}-\mathrm{zA}-\mathrm{z}]) \backslash \mathrm{w}$ * $\backslash 1 \backslash \mathrm{~b}$
- Slide 18
- For example: $\backslash \mathrm{b}[\mathrm{Tt}]$ he $\backslash \mathrm{b}$ or $\backslash \mathrm{b}$ (the \mid The) $\backslash \mathrm{b}$

■ Note that this would fail to match "THE" which might or might not be a good thing

- Slide 24
- Words/tokens are generally separated by whitespace characters
- OK-ish assumption for English but not for many other languages

Solutions to Quick Quizzes

- Slide 34

■ $\mathrm{k}=0 \rightarrow$ BPE "degenerates" to character-based tokenization

- $\mathrm{k}=\infty \rightarrow$ BPE "degenerates" to word-based tokenization
- Slide 52: D

■ Words such as "not", "n't", "never", etc. are typically considered stop words
■ However, these word often flip the sentiment polarity, e.g., "I'm happy." vs "I'm not happy."

- Slide 55

■ Obvious cases: unknown abbreviations (maybe "etc.")
■ More informal writing style, e.g., using ellipses: "I think...well...the movie was good."

- Slide 69

■ Choosing the "diagonal path" yields the shortest alignment (typically preferred)

[^0]: Note: The frequencies can widely different across different corpora (e.g. Wikipedia articles vs. English Literature).

